Description

  Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各
界的赞扬。最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争。战火绵延五百里,在和平环境
中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一
个真龙天子的降生,带领正义打败邪恶。骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一
些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出
征的。战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有
的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的
情况),并且,使得这支骑士军团最具有战斗力。为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战
斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。

Input

  第一行包含一个正整数N,描述骑士团的人数。接下来N行,每行两个正整数,按顺序描述每一名骑士的战斗力
和他最痛恨的骑士。

Output

  应包含一行,包含一个整数,表示你所选出的骑士军团的战斗力。

Sample Input

3
10 2
20 3
30 1

Sample Output

30

HINT

N ≤ 1 000 000,每名骑士的战斗力都是不大于 1 000 000的正整数。

Soltuion

这题啊,很奇妙

删去环上的一条边用树的方法解决

如果边是<u,v>的话,枚举u不取,v随意,还是u随意,v不取

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
#include<set>
#define il inline
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=;
struct edge{int next,to;} e[N];
int n,g[N],M=,w[N],S,T,E;
bool vis[N];
ll f[N][],tmp,ans;
il int read(){
re int hs=;re char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)){
hs=(hs<<)+(hs<<)+c-'';
c=getchar();
}
return hs;
}
il void addedge(int x,int y){
e[++M]=(edge){g[x],y};g[x]=M;
}
il void dfs(re int h,re int fa){
vis[h]=true;
for(int i=g[h];i;i=e[i].next){
if((i^)==fa) continue;
if(vis[e[i].to]){
S=h;T=e[i].to;E=i;continue;
}
dfs(e[i].to,i);
}
}
il void dp(re int h,re int fa){
f[h][]=w[h];f[h][]=;
for(int i=g[h];i;i=e[i].next){
if((i^)==E||i==E) continue;
if((i^)==fa) continue;
dp(e[i].to,i);
f[h][]+=f[e[i].to][];
f[h][]+=max(f[e[i].to][],f[e[i].to][]);
}
}
int main(){
n=read();
for(int i=,x;i<=n;i++){
w[i]=read();x=read();
addedge(x,i);
addedge(i,x);
}
for(int i=;i<=n;i++) if(!vis[i]){
dfs(i,);
dp(S,);
tmp=f[S][];
dp(T,);
tmp=max(tmp,f[T][]);
ans+=tmp;
}
cout<<ans;
return ;
}

bzoj1040 骑士的更多相关文章

  1. BZOJ1040 骑士 【环套树 树形dp】

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 5611  Solved: 2166 [Submit][Stat ...

  2. BZOJ1040 骑士 基环外向树

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 6421  Solved: 2544[Submit][Status ...

  3. BZOJ1040:骑士(基环树DP)

    Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...

  4. BZOJ.4316.小C的独立集(仙人掌 DP)

    题目链接 \(Description\) 求一棵仙人掌的最大独立集. \(Solution\) 如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f ...

  5. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  6. 基环树DP

    基环树DP Page1:问题 啥是基环树?就是在一棵树上增加一条边. Page2:基环树的几种情况 无向 有向:基环外向树,基环内向树. Page3:处理问题的基本方式 1.断环成树 2.分别处理树和 ...

  7. 【bzoj1040】骑士

    [bzoj1040]骑士 题意 给定一个基环森林,求最大独立集. 分析 其实这是一道一年前做过的题. 只是今天在看bzoj1023的时候突然来了几许兴致,回过头来看一看. 如果对于一棵树的最大独立集, ...

  8. 【BZOJ1040】骑士(动态规划)

    [BZOJ1040]骑士(动态规划) 题面 BZOJ 题解 对于每一组厌恶的关系 显然是连边操作 如果是一棵树的话 很显然的树型\(dp\) 但是,现在相当于有很多个基环 也就是在一棵树的基础上再加了 ...

  9. 【BZOJ1040】[ZJOI2008]骑士 树形DP

    [BZOJ1040][ZJOI2008]骑士 Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情 ...

随机推荐

  1. Centos7-kafka-2.12安装验证

    1.下载Kafka 官网:https://kafka.apache.org/ 2.安装脚本 #解压 tar zxf kafka_2.-.tgz -C /usr/local mv /usr/local/ ...

  2. cache-fusion笔记

    GRD  (global resource directory)保存着所有实例中资源的分布情况 GCS  (global cache service)具体执行cache fusion 工作的服务,对应 ...

  3. RocEDU.课程设计2018 第六组 第三周进展 博客补交

    RocEDU.课程设计2018第六组 第三周进展 博客补交 小组成员:20155211解雪莹,20155217杨笛,20155227辜彦霖 计划完成任务:完成课设所有内容 实际完成任务:跑通老师uco ...

  4. 20155323刘威良《网络对抗》Exp7 网络欺诈防范

    20155323刘威良<网络对抗>Exp7 网络欺诈防范 实践目标 理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. 实践内容 (1)简单应用SET工具建立冒名网站 (1分 ...

  5. arm学习之汇编跳转指令总结

    目前所知道的跳转指令有 b,bl,bep,bne.他们共同点是都是以b开头,首先从字面上分析:b:是Branch,表示分支.bl:是Branch Link表示带连接的分支.bep:Branch ,Eq ...

  6. JS计算混合字符串长度

    用的是正则表达式 var str = ”坦克是tank的音译”; var len = str.match(/[^ -~]/g) == null ? str.length : str.length +  ...

  7. idea 开启 tomcat 访问日志记录

    all 为 设置为 查看所有类型的请求 (包括ajax)

  8. mysql基础(一)——表、索引、视图

    SQL语句不区分大小写 创建数据库 create database myData 删除数据库 drop database myData 创建表 create table company ( code ...

  9. Redis简介、安装、配置、启用学习笔记

    前一篇文章有介绍关系型数据库和非关系型数据库的差异,现在就来学习一下用的较广的非关系型数据库:Redis数据库 Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-v ...

  10. DokuWiki 使用

    新建文件夹 修改url, 将新文件夹的名称赋值给url上的id, 如要建一个"DokuWiki"的文件夹,并在文件夹下新增一个"QuickStart"的页面,改 ...