CF494C Helping People 解题报告
CF494C Helping People
题意翻译
有一个长为 \(n\) 的数列,初始时为 \(a_{1\dots n}\)。
给你 \(q\) 个操作,第 \(i\) 个操作将 \([l_i,r_i]\) 内的数全部加一,有 \(p_i\) 的概率被执行。保证区间不会交错,即:\(\forall i,j\in[1,q],l_i\le r_i<l_j\le r_j\) 或 \(l_i\le l_j\le r_j\le r_i\) 或 \(l_j\le r_j<l_i\le r_i\) 或 \(l_j\le l_i\le r_i\le r_j\) 。
求操作完成后数列的最大值的期望。
输入格式
第一行 \(n,\,q\,(1\le n\le10^5,\,1\le q\le 5000)\)。
第二行 \(a_1,\,a_2,\,\cdots,\,a_n\,(0\le a_i\le10^9)\)。
接下来 \(q\) 行,每行 \(l_i,\,r_i,\,p_i\,(1\le l_i\le r_i\le n,\,0\le p_i\le1)\)。
输出格式
一个实数,表示答案,绝对/相对误差在 \(10^{-6}\)内算对。
Translated by ouuan.
考虑区间不交错的用处,一个区间向ta完全包含的区间连边,可以构成一棵树。
然后区间又只有5000个,搞一个\(n^2\)的树形dp多好
考虑求出每个最大值的概率。
令\(dp_{i,j}\)代表区间\(i\)最大值不大于\(j+\max_{l\le i\le r}a_i\)的概率,这样等于的概率只需要\(dp_{i,j}-dp_{i,j-1}\)就可以得到了
转移
\]
注意上下边界。
Code:
#include <cstdio>
#include <algorithm>
#define ls id<<1
#define rs id<<1|1
using std::max;
using std::min;
const int N=5010;
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int n,q;
struct node
{
int l,r,mx;double p;
bool friend operator <(node a,node b){return a.l==b.l?a.r>b.r:a.l<b.l;}
}s[N];
int mx[N*80];
void build(int id,int l,int r)
{
int mid=l+r>>1;
if(l^r) build(ls,l,mid),build(rs,mid+1,r),mx[id]=max(mx[ls],mx[rs]);
else scanf("%d",mx+id);
}
int query(int id,int L,int R,int l,int r)
{
if(l==L&&r==R) return mx[id];
int Mid=L+R>>1;
if(r<=Mid) return query(ls,L,Mid,l,r);
else if(l>Mid) return query(rs,Mid+1,R,l,r);
else return max(query(ls,L,Mid,l,Mid),query(rs,Mid+1,R,Mid+1,r));
}
int dep[N];
double dp[N][N];
void dfs(int now)
{
dep[now]=1;
for(int i=head[now];i;i=Next[i]) dfs(to[i]),dep[now]=max(dep[now],dep[to[i]]+1);
for(int j=0;j<=dep[now];j++)
{
double f1=j?s[now].p:0,f2=1-s[now].p;
for(int i=head[now];i;i=Next[i])
{
int v=to[i];
if(j+s[now].mx-s[v].mx-1>=0) f1*=dp[v][min(q+1,j+s[now].mx-s[v].mx-1)];
f2*=dp[v][min(q+1,j+s[now].mx-s[v].mx)];
}
dp[now][j]=f1+f2;
}
for(int i=dep[now]+1;i<=q+1;i++) dp[now][i]=1;
}
int main()
{
scanf("%d%d",&n,&q);
build(1,1,n);
for(int i=1;i<=q;i++)
{
scanf("%d%d%lf",&s[i].l,&s[i].r,&s[i].p);
s[i].mx=query(1,1,n,s[i].l,s[i].r);
}
s[++q]={1,n,mx[1],0};
std::sort(s+1,s+1+q);
for(int i=2;i<=q;i++)
for(int j=i-1;j;j--)
if(s[j].l<=s[i].l&&s[i].r<=s[j].r)
{
add(j,i);
break;
}
dfs(1);
double x=s[1].mx,ans=dp[1][0]*x;
for(int i=1;i<=dep[1];i++)
ans+=(dp[1][i]-dp[1][i-1])*(x+i);
printf("%.6lf\n",ans);
return 0;
}
2019.1.13
CF494C Helping People 解题报告的更多相关文章
- CH Round #56 - 国庆节欢乐赛解题报告
最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...
- 二模13day1解题报告
二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...
- BZOJ 1051 最受欢迎的牛 解题报告
题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4438 Solved: 2353[S ...
- 习题:codevs 2822 爱在心中 解题报告
这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...
- 习题:codevs 1035 火车停留解题报告
本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...
- 习题: codevs 2492 上帝造题的七分钟2 解题报告
这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...
- 习题:codevs 1519 过路费 解题报告
今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...
- NOIP2016提高组解题报告
NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合
- LeetCode 解题报告索引
最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中...... ...
随机推荐
- centos安装redis并设置开机启动
1.通过yum安装: yum install redis 2.设置redis.conf中daemonize为yes.设置密码: requirepass 3.安装完后的启动脚本是完善的,/etc/ini ...
- AS3.0 自定义右键菜单类
AS3.0 自定义右键菜单类: /** * 自定义右键菜单类 * 自定义菜单项不得超过15个,每个标题必须至少包含一个可见字符. * 标题字符不能超过100个,并且开头的空白字符会被忽略. * 与任何 ...
- vue-cli 动态绑定图片失败
1.template 中引用图片,第一个为固定路径,第二个为动态绑定路径 eg: <img src="XXXXXX.png" alt=""> < ...
- 汇编 inc 和 dec 指令
知识点: inc 加1指令 dec 减1指令 一.加一指令inc inc a 相当于 add a, //i++ 优点 速度比sub指令快,占用空间小 这条指令执行结果影响AF.OF.PF.SF.Z ...
- Kubernetes学习之路(二十三)之资源指标和集群监控
目录 1.资源指标和资源监控 2.Weave Scope监控集群 (1)Weave Scope部署 (2)使用 Scope (3)拓扑结构 (4)实时资源监控 (5)在线操作 (6)强大的搜索功能 2 ...
- libgdx判断矩形重叠碰撞
有两种方式. 1. 排除法,排除四种不可能重叠的情况就是了. public static boolean IsOverlap( Rectangle rect1, Rectangle rect2 ){ ...
- CSS 中 calc() 函数用法
CSS calc() 函数 calc() 函数用于动态计算长度值. 注意,运算符前后都需要保留一个空格,例如:width: calc(100% - 10px): 任何长度值都可以使用calc()函数进 ...
- [BZOJ2138]stone[霍尔定理+线段树]
题意 一共有 \(n\) 堆石子,每堆石子有一个数量 \(a\) ,你要进行 \(m\) 次操作,每次操作你可以在满足前 \(i-1\) 次操作的回答的基础上选择在 \([L_i,R_i]\) 区间中 ...
- 【分享】熟练的Java程序员应该掌握哪些技术?
Java程序员应该掌握哪些能力才能算是脱离菜鸟达到熟练的程度? 1.语法:Java程序员必须比较熟悉语法,在写代码的时候IDE的编辑器对某一行报错应该能够根据报错信息 知道是什么样的语法错误并且知道任 ...
- python + selenium webdriver 自动化测试 之 环境异常处理 (持续更新)
1.webdriver版本与浏览器版本不匹配,在执行的时候会抛出如下错误提示 selenium.common.exceptions.WebDriverException: Message: unkno ...