题面

显然只需要考虑一个点(再乘n),那么枚举这个点的度数,另外的$\frac{(n-1)(n-2)}{2}$条边是随意连的,而这个点连出去的边又和其余$n-1$个点产生组合,所以答案就是

$n*\frac{(n-1)(n-2)}{2}*\sum\limits_{i=0}^{n-1}C_{n-1}^i i^k$

运用第二类斯特林数和自然数幂的关系展开$i^k$,然后发现后面那一坨只要算到$min(n-1,k)$就可以了(再往后斯特林数就成零了)

于是问题变成了快速求一行第二类斯特林数,多项式卷积即可

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int fac[N],inv[N],rev[N],a[N],b[N];
int n,m,k,G,Gi,C,ans,pw[][];
void Add(int &x,int y)
{
x+=y;
if(x>=mod) x-=mod;
}
int Qpow(int x,int p)
{
if(p==) return ;
if(p==) return x;
int tmp=Qpow(x,p/);
return p%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
void Prework()
{
register int i;
scanf("%d%d",&n,&k);
fac[]=inv[]=;
for(i=;i<=k;i++) fac[i]=1ll*fac[i-]*i%mod;
inv[k]=Qpow(fac[k],mod-);
for(i=k-;i;i--) inv[i]=1ll*inv[i+]*(i+)%mod;
for(i=;i<=k;i++)
{
a[i]=i%?mod-inv[i]:inv[i];
b[i]=1ll*Qpow(i,k)*inv[i]%mod;
}
m=; while(m<=*k) m<<=;
for(i=;i<=m;i++)
rev[i]=(rev[i>>]>>)+(i&)*(m>>);
G=,Gi=Qpow(G,mod-);
for(int i=;i<=;i++)
{
pw[i][]=Qpow(G,(mod-)/(<<i));
pw[i][]=Qpow(Gi,(mod-)/(<<i));
}
}
void Trans(int *arr,int len,int typ)
{
register int i,j,k;
for(i=;i<len;i++)
if(rev[i]>i) swap(arr[rev[i]],arr[i]);
for(i=;i<=len;i<<=)
{
int lth=i>>,ort=pw[(int)log2(i)][typ==-];
for(j=;j<len;j+=i)
{
int ori=,tmp;
for(k=j;k<j+lth;k++,ori=1ll*ori*ort%mod)
{
tmp=1ll*ori*arr[k+lth]%mod;
arr[k+lth]=(arr[k]-tmp+mod)%mod;
arr[k]=(arr[k]+tmp)%mod;
}
}
}
if(typ==-)
{
int Ni=Qpow(len,mod-);
for(i=;i<=len;i++)
arr[i]=1ll*arr[i]*Ni%mod;
}
}
int main()
{
register int i;
Prework();
Trans(a,m,),Trans(b,m,);
for(i=;i<m;i++) a[i]=1ll*a[i]*b[i]%mod;
Trans(a,m,-),C=; //for(int i=0;i<=m;i++) printf("%d ",a[i]);
// for(int i=1;i<=n;i++) printf("%d %d\n",fac[i],inv[i]);
for(i=;i<=min(n-,k);i++)
{
Add(ans,1ll*a[i]*fac[i]%mod*C%mod*Qpow(,n-i-)%mod);
C=1ll*C*(n-i-)%mod*Qpow(i+,mod-)%mod;
}
int pw=1ll*(n-)*(n-)/%(mod-);
printf("%lld",1ll*ans*n%mod*Qpow(,pw)%mod);
return ;
}

解题:BZOJ 5093 图的价值的更多相关文章

  1. [BZOJ 5093]图的价值

    Description 题库链接 一个带标号的图的价值定义为每个点度数的 \(k\) 次方的和.给定 \(n\) 和 \(k\) ,请计算所有 \(n\) 个点的带标号的简单无向图的价值之和.对 \( ...

  2. bzoj 5093 图的价值 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...

  3. BZOJ 5093: [Lydsy1711月赛]图的价值

    第二类斯特林数模版题 需要一些组合数的小$ trick$ upd:这里更新了本题巧妙的$ O(k)$做法,虽然常数很大就是了 传送门:here 题意:求所有$ n$个节点的无重边自环图的价值和,定义一 ...

  4. bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数

    [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][D ...

  5. BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT

    定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...

  6. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  7. [CF932E]Team Work & [BZOJ5093]图的价值

    CF题面 题意:求\(\sum_{i=0}^{n}\binom{n}{i}i^k\) \(n\le10^9,k\le5000\) 模\(10^9+7\) BZOJ题面 题意:求\(n*2^{\frac ...

  8. [BZOJ5093]图的价值(NTT+第二类Stirling数)

    5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Sta ...

  9. BZOJ5093图的价值(斯特林数)

    题目描述 “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对 ...

随机推荐

  1. Java基础—面向对象

    一.什么叫面向对象 万物皆对象(待更正) 二.面向对象三大特征 抽象:把一类对象共同特征进行抽取构造类的过程,包括两种抽象:第一种是数据抽象,也就是对象的属性.第二种是过程抽象,也就是对象的行为 封装 ...

  2. Java基础—基础语法与常用命令

    一.基础语法 1.case不加break会有穿透效果 根据阿里规范,严禁省略default语句,即使它一句话也没有 2.for循环执行顺序: for(初始化1;条件2;迭代运算3){ 循环体4: } ...

  3. 20155202张旭《网络对抗技术》 week1 PC平台逆向破解及Bof基础实践

    20155202张旭<网络对抗技术> week1 PC平台逆向破解及Bof基础实践 1.实践目标: 实践对象:一个名为pwn1的linux可执行文件. 该程序正常执行流程是: main调用 ...

  4. 20155308《网络对抗》Exp8 Web基础

    20155308<网络对抗>Exp8 Web基础 实践原理与实践说明 本实践的具体要求有: (1).Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与P ...

  5. django请求的生命周期

    1. 概述 首先我们知道HTTP请求及服务端响应中传输的所有数据都是字符串. 在Django中,当我们访问一个的url时,会通过路由匹配进入相应的html网页中. Django的请求生命周期是指当用户 ...

  6. AngularJS 的异步服务测试与Mocking

    测试 AngularJS 的异步服务 最近,在做项目时掉进了 AngularJS 异步调用 $q 测试的坑中,直接躺枪了.折腾了许久日子,终于想通了其中的道道,但并不确定是最佳的解决方案,最后还是决定 ...

  7. NodeJS旅程 : Less

    我一直强调我是个很懒的人,虽然我认为自己是个代码控但不代表我喜欢写大量代码.有做Web前端开发的人一定都接触CSS,由其在当下CSS3更是做出Cool站的必修课.我曾和不少的前端开发讨论过CSS3,我 ...

  8. python+selenium安装方法

    一.准备工具: 下载 python[python 开发环境] http://python.org/getit/ 下载 setuptools [python 的基础包工具] http://pypi.py ...

  9. [T-ARA][O My God]

    歌词来源:http://music.163.com/#/song?id=22704432 눈을 뜨면 생각이나고 길을 걷다 생각이나고 [nu-neul ddeu-myeon saeng-ga-gi ...

  10. wordpress学习四: 一个简单的自定义主题

    在学习三里分析了自带的一个例子,本节我们就自己仿照他做个简单的吧,重点是调用wordpress封装好的函数和类,css和html可以稍好在调整. 将wp带的例子复制一份处理,重新名个名字. 清空ind ...