解题:BZOJ 5093 图的价值
显然只需要考虑一个点(再乘n),那么枚举这个点的度数,另外的$\frac{(n-1)(n-2)}{2}$条边是随意连的,而这个点连出去的边又和其余$n-1$个点产生组合,所以答案就是
$n*\frac{(n-1)(n-2)}{2}*\sum\limits_{i=0}^{n-1}C_{n-1}^i i^k$
运用第二类斯特林数和自然数幂的关系展开$i^k$,然后发现后面那一坨只要算到$min(n-1,k)$就可以了(再往后斯特林数就成零了)
于是问题变成了快速求一行第二类斯特林数,多项式卷积即可
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int fac[N],inv[N],rev[N],a[N],b[N];
int n,m,k,G,Gi,C,ans,pw[][];
void Add(int &x,int y)
{
x+=y;
if(x>=mod) x-=mod;
}
int Qpow(int x,int p)
{
if(p==) return ;
if(p==) return x;
int tmp=Qpow(x,p/);
return p%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
void Prework()
{
register int i;
scanf("%d%d",&n,&k);
fac[]=inv[]=;
for(i=;i<=k;i++) fac[i]=1ll*fac[i-]*i%mod;
inv[k]=Qpow(fac[k],mod-);
for(i=k-;i;i--) inv[i]=1ll*inv[i+]*(i+)%mod;
for(i=;i<=k;i++)
{
a[i]=i%?mod-inv[i]:inv[i];
b[i]=1ll*Qpow(i,k)*inv[i]%mod;
}
m=; while(m<=*k) m<<=;
for(i=;i<=m;i++)
rev[i]=(rev[i>>]>>)+(i&)*(m>>);
G=,Gi=Qpow(G,mod-);
for(int i=;i<=;i++)
{
pw[i][]=Qpow(G,(mod-)/(<<i));
pw[i][]=Qpow(Gi,(mod-)/(<<i));
}
}
void Trans(int *arr,int len,int typ)
{
register int i,j,k;
for(i=;i<len;i++)
if(rev[i]>i) swap(arr[rev[i]],arr[i]);
for(i=;i<=len;i<<=)
{
int lth=i>>,ort=pw[(int)log2(i)][typ==-];
for(j=;j<len;j+=i)
{
int ori=,tmp;
for(k=j;k<j+lth;k++,ori=1ll*ori*ort%mod)
{
tmp=1ll*ori*arr[k+lth]%mod;
arr[k+lth]=(arr[k]-tmp+mod)%mod;
arr[k]=(arr[k]+tmp)%mod;
}
}
}
if(typ==-)
{
int Ni=Qpow(len,mod-);
for(i=;i<=len;i++)
arr[i]=1ll*arr[i]*Ni%mod;
}
}
int main()
{
register int i;
Prework();
Trans(a,m,),Trans(b,m,);
for(i=;i<m;i++) a[i]=1ll*a[i]*b[i]%mod;
Trans(a,m,-),C=; //for(int i=0;i<=m;i++) printf("%d ",a[i]);
// for(int i=1;i<=n;i++) printf("%d %d\n",fac[i],inv[i]);
for(i=;i<=min(n-,k);i++)
{
Add(ans,1ll*a[i]*fac[i]%mod*C%mod*Qpow(,n-i-)%mod);
C=1ll*C*(n-i-)%mod*Qpow(i+,mod-)%mod;
}
int pw=1ll*(n-)*(n-)/%(mod-);
printf("%lld",1ll*ans*n%mod*Qpow(,pw)%mod);
return ;
}
解题:BZOJ 5093 图的价值的更多相关文章
- [BZOJ 5093]图的价值
Description 题库链接 一个带标号的图的价值定义为每个点度数的 \(k\) 次方的和.给定 \(n\) 和 \(k\) ,请计算所有 \(n\) 个点的带标号的简单无向图的价值之和.对 \( ...
- bzoj 5093 图的价值 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...
- BZOJ 5093: [Lydsy1711月赛]图的价值
第二类斯特林数模版题 需要一些组合数的小$ trick$ upd:这里更新了本题巧妙的$ O(k)$做法,虽然常数很大就是了 传送门:here 题意:求所有$ n$个节点的无重边自环图的价值和,定义一 ...
- bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 245 Solved: 128[Submit][Status][D ...
- BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- [CF932E]Team Work & [BZOJ5093]图的价值
CF题面 题意:求\(\sum_{i=0}^{n}\binom{n}{i}i^k\) \(n\le10^9,k\le5000\) 模\(10^9+7\) BZOJ题面 题意:求\(n*2^{\frac ...
- [BZOJ5093]图的价值(NTT+第二类Stirling数)
5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 250 Solved: 130[Submit][Sta ...
- BZOJ5093图的价值(斯特林数)
题目描述 “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对 ...
随机推荐
- 20155233 《网络对抗》 Exp8 Web基础
实验内容 Web前端HTML Web前端javascipt Web后端:MySQL基础:正常安装.启动MySQL,建库.创建用户.修改密码.建表 Web后端:编写PHP网页,连接数据库,进行用户认证 ...
- 20155339 Exp6 信息搜集与漏洞扫描
20155339 Exp6 信息搜集与漏洞扫描 实验后回答问题 (1)哪些组织负责DNS,IP的管理. 全球根服务器均由美国政府授权的ICANN统一管理,负责全球的域名根服务器.DNS和IP地址管理. ...
- 汇编 循环位移指令 ROL, 循环位移指令 ROR
知识点: 循环位移指令 ROL 循环位移指令 ROR 一.循环位移指令 ROL ROR int i=0x77886611;//01110111100010000110011000010001 ...
- mfc Radio Buttons
添加单选按钮 关联变量 调试宏TRACE BOOL类型 一.添加一组单选按钮 二.添加第二组单选按钮 三.关联变量 四.单选按钮运用 void CMY_Dialog::OnBnClickedButto ...
- 【第十二课】FTP服务
目录 FTP服务 1.Linux下部署pure-ftpd 2.FTP的主动和被动模式 2.1.什么是主动FTP 2.2.什么是被动FTP 2.3.主动模式ftp与被动模式FTP优点和缺点: FTP服务 ...
- JQuery快速入门-事件与效果
一.事件 事件绑定的方法有两种: 绑定到元素 查找元素后绑定事件 方法1:绑定到元素 <body> <p onclick='func1()'>点击我</p> < ...
- Jq_select的操作
jQuery获取Select选择的Text和Value: 语法解释: $("#select_id").change(function(){//code...}); //为Selec ...
- 前端常见算法面试题之 - 二维数组中的查找[JavaScript解法]
--------------------- 作者:吴潇雄 来源:CSDN 原文:https://blog.csdn.net/weixin_43439741/article/details/835118 ...
- Ajax实例OR技术原理 转自 (http://blog.csdn.net/evankaka )
摘要:AJAX即“Asynchronous Javascript And XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术.AJAX 是一种用于创建快速动态网页的 ...
- 《口算大作战 2》DLC:算法真奇妙
211614331 王诚荣 211614354 陈斌 --第一次结对作业 DLC DLC:三年级混合运算模块现已更新!现在您可以愉快的使用三年级题库啦.同时您必须拥有本体才能使用此DLC 单击此处查看 ...