题目描述

给定一个表示分数的非负整数数组。 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,……。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

示例 1:

输入: [1, 5, 2]

输出: False

解释: 一开始,玩家1可以从1和2中进行选择。

如果他选择2(或者1),那么玩家2可以从1(或者2)和5中进行选择。如果玩家2选择了5,那么玩家1则只剩下1(或者2)可选。

所以,玩家1的最终分数为 1 + 2 = 3,而玩家2为 5。

因此,玩家1永远不会成为赢家,返回 False。

示例 2:

输入: [1, 5, 233, 7]

输出: True

解释: 玩家1一开始选择1。然后玩家2必须从5和7中进行选择。无论玩家2选择了哪个,玩家1都可以选择233。

最终,玩家1(234分)比玩家2(12分)获得更多的分数,所以返回 True,表示玩家1可以成为赢家。

解题思路

这一题用动态规划来解决。

对于原数组A[0,….,n-1],我们定义

dp[i][j]表示原数组中从i到j的这么多数中,按照游戏规则,某个玩家所能获得的最大分数。

假设这个分数此时属于palyer1,那么dp[i+1][j]或者dp[i][j-1]表示player2玩家所能获得的最大分数。因为对于player1来讲,他第一次选择要么是第i个数,要么是第j个数,所以对于player2来讲,就分两种情况取最大。

另外我们设从i到j的所有数的和是sum[i,j],则可以得到递推公式(核心!):

dp[i][j]=max(sum[i+1][j]-dp[i+1][j]+nums[i], sum[i][j-1]-dp[i][j-1]+nums[j]) 。

这个需要好好想想!其实不难!

化简一下:

dp[i][j]=max(sum[i][j]-dp[i+1][j], sum[i][j]-dp[i][j-1]) 。

但是写代码实现时,我们要注意:

首先要得到dp[i][i]的值,之后依次得到:

dp[0][1],dp[1,2],dp[2,3]…dp[n-2][n-1]

之后再得到dp[0][2],dp[1][3],…

即长度由短变长的顺序来遍历

class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int len = nums.size(),i,j,dp[len][len],sum[len][len];
for(i = 0; i < len; i++){
dp[i][i] = nums[i];
sum[i][i] = nums[i];
} for(i = 0; i < len-1; i++){
dp[i][i+1] = max(dp[i][i],dp[i+1][i+1]);
sum[i][i+1] = nums[i]+nums[i+1];
} for(i = 2; i < len; i++){ // i表示长度
for(j = 0; j < len-i; j++){ // j表示左端
sum[j][j+i] = sum[j][j+i-1]+nums[j+i];
dp[j][j+i] = max(sum[j][j+i]-dp[j][j+i-1],sum[j][j+i]-dp[j+1][j+i]);
}
}
if(dp[0][len-1] >= sum[0][len-1]-dp[0][len-1])
return true;
else
return false; }
};

leetcode 486 预测赢家的更多相关文章

  1. Java实现 LeetCode 486 预测赢家

    486. 预测赢家 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,--.每次一个玩家只能拿取一个分数,分数被拿取之后不再可 ...

  2. 每日一题-——LeetCode(486) 预测赢家

    题目描述: 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到 ...

  3. 每日一题 LeetCode 486. 预测赢家 【递推】【前缀和】【动态规划】

    题目链接 https://leetcode-cn.com/problems/predict-the-winner/ 题目说明 题解 主要方法:递推:动态规划:前缀和 解释说明: 求前缀和 pre_nu ...

  4. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  5. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  6. 486 Predict the Winner 预测赢家

    给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...

  7. [LeetCode] Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  8. [Swift]LeetCode486. 预测赢家 | Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. 随手练——博弈论入门 leetcode - 486. Predict the Winner

    题目链接:https://leetcode.com/problems/predict-the-winner/ 1.暴力递归 当前数组左边界:i,右边界:j: 对于先发者来说,他能取到的最大值是:max ...

随机推荐

  1. KMP算法(——模板习题与总结)

    KMP算法是一种改进的模式匹配算法,相比于朴素的模式匹配算法效率更高.下面讲解KMP算法的基本思想与实现. 先来看一下朴素模式匹配算法的基本思想与实现. 朴素模式匹配算法的基本思想是匹配过程中如果该位 ...

  2. kooboocms遇到的问题

    1.工作流:需要在网站的内容设置里启用工作流,然后添加一个工作流,再在内容文件夹里设置工作流属性(经测试,工作流对网络用户才有效,也就是说必须把用户添加到该网站下) 2.网络用户页面bug:在行 1. ...

  3. 电脑分辨率与pc端页面布局

    在电脑设置中选择:控制面板->外观和个性化->显示 可以设置页面的显示比例,原因是在1920*1080的分辨率下页面的图标就会变得比较小,方便用户看,这个功能就是把页面内容变大(默认是中等 ...

  4. c# 对文件的各种操作

    C# 获取文件名及扩展名 string aFirstName = aFile.Substring(aFile.LastIndexOf("\\") + 1, (aFile.LastI ...

  5. 用Dreamweaver离线编写WordPress文章

    WordPress 自带的编辑器功能较弱,也不支持离线写文章.Windows Live Writer功能还行,不过早就停止更新了.如何能够找到一个功能强大的,可以离线编辑文章的WordPress文章编 ...

  6. [翻译]C# BAD PRACTICES: Learn how to make a good code by bad example---C#:如何将坏的代码重新编译为好的代码

    自己的前言说明: 本文原作者:Radoslaw Sadowski,原文链接为:C# BAD PRACTICES: Learn how to make a good code by bad exampl ...

  7. Linux常用基本命令[find]用法(1)

    find是个很强大的命令,用法很多. 作用:查找目录下的文件,同时也可以调用其他命令执行相应的操作 用法: find [选项] [路径][操作语句] find [-H] [-L] [-P] [-D d ...

  8. python变量作用域,函数与传参

    一.元组传值: 一般情况下函数传递参数是1对1,这里x,y是2个参数,按道理要传2个参数,如果直接传递元祖,其实是传递一个参数 >>> def show( x, y ): ... p ...

  9. 关于CSS和JS中用到的各种Height和Width的问题

    自己记不住,列一下关于CSS和JS中用到的各类有关Height和Width属性的介绍对比. 所属类别 属性名 意义 其他 浏览器模型 Screen.height 浏览器窗口所在的屏幕的高度(单位像素) ...

  10. python-装饰器模式

    源码地址:https://github.com/weilanhanf/PythonDesignPatterns 说明: 有时为了给某个对象而不是给整个类添加一个功能,使用继承机制是添加功能的一个有效途 ...