【洛谷P3884 [JLOI2009]】二叉树问题
题目描述
如下图所示的一棵二叉树的深度、宽度及结点间距离分别为:
深度:4 宽度:4(同一层最多结点个数)
结点间距离: ⑧→⑥为8 (3×2+2=8)
⑥→⑦为3 (1×2+1=3)
注:结点间距离的定义:由结点向根方向(上行方向)时的边数×2,
与由根向叶结点方向(下行方向)时的边数之和。
输入输出格式
输入格式:
输入文件第一行为一个整数n(1≤n≤100),表示二叉树结点个数。接下来的n-1行,表示从结点x到结点y(约定根结点为1),最后一行两个整数u、v,表示求从结点u到结点v的距离。
输出格式:
三个数,每个数占一行,依次表示给定二叉树的深度、宽度及结点u到结点v间距离。
输入输出样例
输入样例#1:
10
1 2
1 3
2 4
2 5
3 6
3 7
5 8
5 9
6 10
8 6
输出样例#1:
4
4
8
算法:
最近公共祖先(LCA)倍增
分析:
看题看了很久都没看懂,后来才发现这个是一个几乎lca的模板问题,只用把路径处理一下就好了,这里采用倍增的算法。
上代码:
#include<cstdio>
#define max(a,b) a>b?a:b
#define swap(a,b) a^=b^=a^=b
#define maxn 110
using namespace std; int n,m,s,tot,head[maxn],deep[maxn],p[maxn][],md,t[],ans;
struct node
{
int nxt,to;
}edge[maxn<<]; int read()
{
int x=,f=;
char c=getchar();
while (c<||c>)
f=c=='-'?-:,c=getchar();
while (c>=&&c<=)
x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
} void add(int a,int b)
{
edge[++tot]=(node){head[a],b};
head[a]=tot;
edge[++tot]=(node){head[b],a};
head[b]=tot;
} void init()
{
for (int j=;(<<j)<=n;j++)
for (int i=;i<=n;i++)
if (p[i][j-])
p[i][j]=p[p[i][j-]][j-];
} int dfs(int u)
{
for (int i=head[u];i;i=edge[i].nxt)
if (!deep[edge[i].to])
{
deep[edge[i].to]=deep[u]+;
p[edge[i].to][]=u;
dfs(edge[i].to);
}
} int LCA(int a,int b)
{
if (deep[a]<deep[b])
swap(a,b);
int i,j;
for (i=;(<<i)<=deep[a];i++);
i--;
for (j=i;j>=;j--)
if (deep[b]<=deep[a]-(<<j))
a=p[a][j];
if (a==b)
return a;
for (j=i;j>=;j--)
if (p[a][j]!=p[b][j]&&deep[p[a][j]]>=)
{
a=p[a][j];
b=p[b][j];
}
return p[a][];
} int main()
{
int i,j,k,u,v;
n=read();
for (i=;i<=n-;i++)
add(read(),read());
u=read(),v=read();
deep[]=;
dfs();
init();
for (i=;i<=n;i++)
md=max(md,deep[i]),t[deep[i]]++;
for (i=;i<=;i++)
t[]=max(t[],t[i]);
k=LCA(u,v);
ans=(deep[u]-deep[k])*+deep[v]-deep[k];
printf("%d\n%d\n%d",md,t[],ans);
return ;
}
【洛谷P3884 [JLOI2009]】二叉树问题的更多相关文章
- 洛谷 P3884 [JLOI2009]二叉树问题
目录 题目 思路 \(Code\) 题目 P3884 [JLOI2009]二叉树问题 思路 深搜统计深度,倍增\(\text{LCA}\)求边数 \(Code\) #include<iostre ...
- [洛谷P1040] 加分二叉树
洛谷题目链接:加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di ...
- 题解【洛谷P3884】[JLOI2009]二叉树问题
题面 题解 这道题目可以用很多方法解决,这里我使用的是树链剖分. 关于树链剖分,可以看一下我的树链剖分学习笔记. 大致思路是这样的: 第\(1\)次\(dfs\)记录出每个点的父亲.重儿子.深度.子树 ...
- 洛谷P3884 二叉树问题
题目描述 如下图所示的一棵二叉树的深度.宽度及结点间距离分别为: 深度:\(4\) 宽度:\(4\)(同一层最多结点个数) 结点间距离: \(⑧→⑥为8 (3×2+2=8)\) \(⑥→⑦为3 (1× ...
- 洛谷 P1305 新二叉树 Label:字符串的输出总是有惊喜
题目描述 输入一串完全二叉树,用遍历前序打出. 输入输出格式 输入格式: 第一行为二叉树的节点数n. 后面n行,每一个字母为节点,后两个字母分别为其左右儿子. 空节点用*表示 输出格式: 前序排列的完 ...
- 洛谷 P1040 加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- 洛谷 P1305 新二叉树
P1305 新二叉树 题目描述 输入一串完全二叉树,用遍历前序打出. 输入输出格式 输入格式: 第一行为二叉树的节点数n. 后面n行,每一个字母为节点,后两个字母分别为其左右儿子. 空节点用*表示 输 ...
- 洛谷P1040 加分二叉树(树形dp)
加分二叉树 时间限制: 1 Sec 内存限制: 125 MB提交: 11 解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...
- 洛谷P1040 加分二叉树【记忆化搜索】
题目链接:https://www.luogu.org/problemnew/show/P1040 题意: 某一个二叉树的中序遍历是1~n,每个节点有一个分数(正整数). 二叉树的分数是左子树分数乘右子 ...
随机推荐
- Apache Ignite 学习笔记(一): Ignite介绍、部署安装和REST/SQL客户端使用
Apache Ignite 介绍 Ignite是什么呢?先引用一段官网关于Ignite的描述: Ignite is memory-centric distributed database, cachi ...
- Spring学习总结之装配bean
1. XML中显式配置 规范,文件头: <?xml version=”1.0” encoding=”UTF-8”?> <beans xmlns=http:// ...
- [2017BUAA软工助教]剩余个人作业与deadline
软件工程剩余作业与deadline 标签(空格分隔): 软件工程 一.个人阅读作业+总结 对软件工程的学习做一个总结. 阅读下列关于软件开发本质和开发方法的博客/文章,结合自己在个人项目/结对编程/团 ...
- c++实现计算器功能 -----初代
由于时间问题,我就写的简单一点. 课程作业一 git链接: Operations 里面的Operations.cpp文件就是完成品. 1 我就简单的对我原来的代码进行了重构,原本的代码已经把函数都分得 ...
- Github作为图床的一个小坑
Github作为图床的一个小坑 前言 听了少铭同学建议把github作为图床,结果遇到了一个小坑,总是显示不出来图片. 问题描述与解决 形如下的链接是显示不出来的: https://github.co ...
- SSM 框架快速整合实例--学生查询
一.快速准备 SSM 框架即 Spring 框架.SpringMVC 框架.MyBatis 框架,关于这几个框架的基础和入门程序,我前面已经写过几篇文章作为基础和入门介绍了.对于这 3 个框架还不熟悉 ...
- “人向猿进阶”之软件工程第三课----WORDCOUNT.EXE统计程序
---恢复内容开始--- WC项目要求 这个项目要求写一个命令行程序,模仿已有的wc.exe的功能,并加以扩充,给出某程序设计源语言文件的字符数.单词数和行数.给实现一个统计程序,它能正确统计程序文件 ...
- Alpha 冲刺三
团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 项目燃尽图 项目进展 发布界面布局完成.登 ...
- 使用alpine的docker镜像下 dind 的方式安装dotnet core 的一个非dockerfile的方法
1. 下载dind的镜像 docker pull docker:dind 2. 执行该镜像 docker run -it --privileged --name some-docker -d dock ...
- 写出完整版的strcpy函数及其他如:strcat,strcmp,strstr的函数实现
(---牛客网中刷题---)写出完整版的strcpy函数 如果编写一个标准strcpy函数的总分值为10,下面给出几个不同得分的答案: 2分 1 2 3 4 void strcpy( char *st ...