▶ 书中第六章部分程序,加上自己补充的代码,包括高斯消元法求解线性方程组,高斯 - 约旦消元法求解线性方程组

● 高斯消元法求解线性方程组,将原方程转化为上三角矩阵,然后从最后一个方程开始求解

 package package01;

 import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdRandom; public class class01
{
private static final double EPSILON = 1e-8;
private final int m; // 方程个数
private final int n; // 变量个数
private double[][] a; // 增广矩阵
private double[] x; // 方程的解
private boolean haveSolution; // 方程是否有解 public class01(double[][] A, double[] b)
{
m = A.length;
n = A[0].length;
if (b.length != m)
throw new IllegalArgumentException("Dimensions disagree");
a = new double[m][n + 1];
x = new double[n]; for (int i = 0; i < m; i++) // 搬运 A 和 b 到 a 中
{
for (int j = 0; j < n; j++)
a[i][j] = A[i][j];
}
for (int i = 0; i < m; i++)
a[i][n] = b[i]; for (int p = 0; p < Math.min(m, n); p++) // 消元计算,a[p][p] 为当前主元
{
int max = p; // 从第 p 行往下寻找主元最大的行
for (int i = p + 1; i < m; i++)
max = (Math.abs(a[i][p]) > Math.abs(a[max][p])) ? i : max; double[] temp = a[p]; // 将最大主元行换到第 p 行
a[p] = a[max];
a[max] = temp; if (Math.abs(a[p][p]) <= EPSILON) // 主元为 0,退化
continue; for (int i = p + 1; i < m; i++) // 用主元消去后面的所有行
{
double alpha = a[i][p] / a[p][p];
for (int j = p; j <= n; j++)
a[i][j] -= alpha * a[p][j];
}
} for (int i = Math.min(n - 1, m - 1); i >= 0; i--) // 从最后一个方程开始求解 x[i]
{
double sum = 0.0;
for (int j = i + 1; j < n; j++)
sum += a[i][j] * x[j];
if (Math.abs(a[i][i]) > EPSILON)
x[i] = (a[i][n] - sum) / a[i][i]; // 解 x[i]
else if (Math.abs(a[i][n] - sum) > EPSILON) // x[i] 系数为 0,但是方程右边非 0,无解
{
StdOut.println("No solution");
return;
}
}
for (int i = n; i < m; i++) // m > n 的情形,检查剩余的方程是否有矛盾
{
double sum = 0.0;
for (int j = 0; j < n; j++)
sum += a[i][j] * x[j];
if (Math.abs(a[i][n] - sum) > EPSILON)
{
StdOut.println("No solution");
return;
}
} for (int i = 0; i < m; i++) // 检验 A*x = b
{
double sum = 0.0;
for (int j = 0; j < n; j++)
sum += A[i][j] * x[j];
if (Math.abs(sum - b[i]) > EPSILON)
StdOut.println("not feasible\n b[" + i + "] = " + b[i] + ", sum = " + sum);
}
haveSolution = true;
} public double[] solution()
{
return haveSolution ? x : null;
} private static void test(String name, double[][] A, double[] b)
{
StdOut.println("----------------------------------------------------\n" + name + "\n----------------------------------------------------");
class01 gaussian = new class01(A, b);
double[] x = gaussian.solution();
if (x != null)
{
for (int i = 0; i < x.length; i++)
StdOut.printf("%.6f\n", x[i]);
}
StdOut.println();
} private static void test1() // 3 × 3 非退化矩阵,x = [-1, 2, 2]
{
double[][] A = { { 0, 1, 1 },{ 2, 4, -2 },{ 0, 3, 15 } };
double[] b = { 4, 2, 36 };
test("test 1 (3-by-3 system, nonsingular)", A, b);
} private static void test2() // 3 × 3 无解
{
double[][] A = { { 1, -3, 1 },{ 2, -8, 8 },{ 3, -11, 9 } };
double[] b = { 4, -2, 9 };
test("test 2 (3-by-3 system, nonsingular)", A, b);
} private static void test3() // 5 × 5 无解
{
double[][] A = { { 2, -3, -1, 2, 3 },{ 4, -4, -1, 4, 11 },{ 2, -5, -2, 2, -1 },{ 0, 2, 1, 0, 4 },{ -4, 6, 0, 0, 7 } };
double[] b = { 4, 4, 9, -6, 5 };
test("test 3 (5-by-5 system, no solutions)", A, b);
} private static void test4() // 5 × 5 无穷多组解,x = [-6.25, -4.5, 0, 0, 1]
{
double[][] A = { { 2, -3, -1, 2, 3 },{ 4, -4, -1, 4, 11 },{ 2, -5, -2, 2, -1 },{ 0, 2, 1, 0, 4 },{ -4, 6, 0, 0, 7 } };
double[] b = { 4, 4, 9, -5, 5 };
test("test 4 (5-by-5 system, infinitely many solutions)", A, b);
} private static void test5() // 4 × 3 列满秩多解,x = [-1, 2, 2, ?]
{
double[][] A = { { 0, 1, 1 },{ 2, 4, -2 },{ 0, 3, 15 },{ 2, 8, 14 } };
double[] b = { 4, 2, 36, 42 };
test("test 7 (4-by-3 system, full rank)", A, b);
} private static void test6() // 4 × 3 列满秩无解
{
double[][] A = { { 0, 1, 1 },{ 2, 4, -2 },{ 0, 3, 15 },{ 2, 8, 14 } };
double[] b = { 4, 2, 36, 40 };
test("test 8 (4-by-3 system, no solution)", A, b);
} private static void test7() // 3×4 满秩,x = [3, -1, -2, 0]
{
double[][] A = { { 1, -3, 1, 1 },{ 2, -8, 8, 2 },{ -6, 3, -15, 3 } };
double[] b = { 4, -2, 9 };
test("test 9 (3-by-4 system, full rank)", A, b);
} public static void main(String[] args)
{
test1();
test2();
test3();
test4();
test5();
test6();
test7();
int n = Integer.parseInt(args[0]); // 随机测试
double[][] A = new double[n][n];
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
A[i][j] = StdRandom.uniform(1000);
}
double[] b = new double[n];
for (int i = 0; i < n; i++)
b[i] = StdRandom.uniform(1000);
test(n + "-by-" + n + " (probably nonsingular)", A, b);
}
}

● 高斯 - 约旦消元法求解线性方程组,将原方程转化为约旦标准型,无解时产生一个 yA == 0,yb != 0 的解

 package package01;

 import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdRandom; public class class01
{
private static final double EPSILON = 1e-8;
private final int n; // 方程个数等于未知数个数
private double[][] a;
private double[] x;
private boolean haveSolution = true; // 方程是否有解 public class01(double[][] A, double[] b)
{
n = b.length;
a = new double[n][n + n + 1];
x = new double[n]; for (int i = 0; i < n; i++) // 搬运
{
for (int j = 0; j < n; j++)
a[i][j] = A[i][j];
}
for (int i = 0; i < n; i++) // 有解时 a[0:n-1][n:n*2] 最终为 A 的逆,否则某行为扩展解
a[i][n + i] = 1.0;
for (int i = 0; i < n; i++)
a[i][n + n] = b[i]; for (int p = 0; p < n; p++) // 消元计算
{
int max = p;
for (int i = p + 1; i < n; i++)
max = (Math.abs(a[i][p]) > Math.abs(a[max][p])) ? i : max; double[] temp = a[p];
a[p] = a[max];
a[max] = temp; if (Math.abs(a[p][p]) <= EPSILON)
continue; for (int i = 0; i < n; i++) // 高斯-约旦消元
{
double alpha = a[i][p] / a[p][p];
for (int j = 0; j <= n + n; j++)
a[i][j] -= (i != p) ? alpha * a[p][j] : 0;
}
for (int j = 0; j <= n + n; j++) // 主行归一化
a[p][j] /= (j != p) ? a[p][p] : 1;
for (int i = 0; i < n; i++) // 被消去行的主元所在列元素强制归 0,主元归 1
a[i][p] = 0.0;
a[p][p] = 1.0;
} for (int i = 0; i < n; i++) // 求解 x
{
if (Math.abs(a[i][i]) > EPSILON)
x[i] = a[i][n + n] / a[i][i];
else if (Math.abs(a[i][n + n]) > EPSILON)
{
StdOut.println("No solution");
haveSolution = false;
break;
}
}
if (!haveSolution) // 无解,输出约旦阵中第 i 行的结果
{
for (int i = 0; i < n; i++)
{
if ((Math.abs(a[i][i]) <= EPSILON) && (Math.abs(a[i][n + n]) > EPSILON))
{
for (int j = 0; j < n; j++)
x[j] = a[i][n + j];
}
}
} if (haveSolution) // 检验结果
{
for (int i = 0; i < n; i++) // 有解则检验 A*x = b
{
double sum = 0.0;
for (int j = 0; j < n; j++)
sum += A[i][j] * x[j];
if (Math.abs(sum - b[i]) > EPSILON)
StdOut.printf("not feasible\nb[%d] = %8.3f, sum = %8.3f\n", i, b[i], sum);
}
}
else
{
for (int j = 0; j < n; j++) // 无解则检验 yA = 0, yb != 0
{
double sum = 0.0;
for (int i = 0; i < n; i++)
sum += A[i][j] * x[i];
if (Math.abs(sum) > EPSILON)
StdOut.printf("invalid certificate of infeasibility\nsum = %8.3f\n", sum);
}
double sum = 0.0;
for (int i = 0; i < n; i++)
sum += x[i] * b[i];
if (Math.abs(sum) < EPSILON)
StdOut.printf("invalid certificate of infeasibility\nyb = %8.3f\n", sum);
}
} public double[] solution()
{
return x;
} public boolean haveActualSolution()
{
return haveSolution;
} private static void test(String name, double[][] A, double[] b)
{
StdOut.println("----------------------------------------------------\n" + name + "\n----------------------------------------------------");
class01 gaussian = new class01(A, b);
double[] x = gaussian.solution();
StdOut.println(gaussian.haveActualSolution() ? "Solution:" : "Certificate of infeasibility");
for (int i = 0; i < x.length; i++)
StdOut.printf("%10.6f\n", x[i]);
StdOut.println();
} private static void test1() // 3×3 非退化,x = [ -1, 2, 2 ]
{
double[][] A = { { 0, 1, 1 },{ 2, 4, -2 },{ 0, 3, 15 } };
double[] b = { 4, 2, 36 };
test("test 1", A, b);
} private static void test2() // 3×3 无解,x = [ 1, 0, 1/3 ]
{
double[][] A = { { 2, -1, 1 },{ 3, 2, -4 },{ -6, 3, -3 } };
double[] b = { 1, 4, 2 };
test("test 5", A, b);
} private static void test3() // 5×5 非退化,x = [ -6.25, -4.5, 0, 0, 1 ]
{
double[][] A = { { 2, -3, -1, 2, 3 },{ 4, -4, -1, 4, 11 },{ 2, -5, -2, 2, -1 },{ 0, 2, 1, 0, 4 },{ -4, 6, 0, 0, 7 } };
double[] b = { 4, 4, 9, -5, 5 };
test("test 4", A, b);
} private static void test4() // 5×5 无解,x = [ -1, 0, 1, 1, 0 ]
{
double[][] A = { { 2, -3, -1, 2, 3 },{ 4, -4, -1, 4, 11 },{ 2, -5, -2, 2, -1 },{ 0, 2, 1, 0, 4 },{ -4, 6, 0, 0, 7 } };
double[] b = { 4, 4, 9, -6, 5 };
test("test 3", A, b);
} private static void test5() // 3×3 无穷多组解,x = [ -1.375, 1.625, 0 ]
{
double[][] A = { { 1, -1, 2 },{ 4, 4, -2 },{ -2, 2, -4 } };
double[] b = { -3, 1, 6 };
test("test 6 (infinitely many solutions)", A, b);
} public static void main(String[] args)
{
test1();
test2();
test3();
test4();
test5();
int n = Integer.parseInt(args[0]);
double[][] A = new double[n][n];
double[] b = new double[n];
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
A[i][j] = StdRandom.uniform(1000);
}
for (int i = 0; i < n; i++)
b[i] = StdRandom.uniform(1000);
test("random " + n + "-by-" + n + " (likely full rank)", A, b); for (int i = 0; i < n - 1; i++)
{
for (int j = 0; j < n; j++)
A[i][j] = StdRandom.uniform(1000);
}
for (int i = 0; i < n - 1; i++)
{
double alpha = StdRandom.uniform(11) - 5.0;
for (int j = 0; j < n; j++)
A[n - 1][j] += alpha * A[i][j];
}
for (int i = 0; i < n; i++)
b[i] = StdRandom.uniform(1000);
test("random " + n + "-by-" + n + " (likely infeasible)", A, b);
}
}

《算法》BEYOND 部分程序 part 1的更多相关文章

  1. 信号量和PV操作写出Bakery算法的同步程序

    面包店烹制面包及蛋糕,由n个销售员卖出.当有顾客进店购买面包或蛋糕时,应先在取号机上取号,然后等待叫号,若有销售员空闲时便叫下一号,试用信号量和PV操作写出Bakery算法的同步程序. 设计要求 1) ...

  2. GMM算法的matlab程序

    GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  3. GMM算法的matlab程序(初步)

    GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  4. KFCM算法的matlab程序(用FCM初始化聚类中心)

    KFCM算法的matlab程序(用FCM初始化聚类中心) 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与 ...

  5. KFCM算法的matlab程序

    KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...

  6. FCM算法的matlab程序2

    FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...

  7. FCM算法的matlab程序

    FCM算法的matlab程序 在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  8. K-means算法的matlab程序

    K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 ...

  9. FCM算法的matlab程序(初步)

    FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  10. K-means算法的matlab程序(初步)

    K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...

随机推荐

  1. messageBox 的几种显示方式

    1.最简单的,只显示提示信息 MessageBox.Show("Hello~~~~"); 2. 可以给消息框加上标题. MessageBox.Show("There ar ...

  2. XE5 Android 开发数据访问server端[转]

    建立一个webservices  stand-alone vcl application 作为手机访问的服务端 1.new->other->webservices 2.选择 stand-a ...

  3. 什么是词性标注(POS tagging)

    词性标注也叫词类标注,POS tagging是part-of-speech tagging的缩写. 维基百科对POS Tagging的定义: In corpus linguistics, part-o ...

  4. 使用Html Agility Pack快速解析Html内容

    Html Agility Pack 是一个开源的.NET 方案HTML解析器. 开源地址:https://github.com/zzzprojects/html-agility-pack 用法:vs上 ...

  5. JDK类集框架实验(ArrayList,LinkedList,TreeSet,HashSet,TreeMap,HashMap)

        ArrayList import java.util.ArrayList; public class C8_3 { public static void main(String[] args) ...

  6. CSDN也有我的博客啦

    我的CSDN:https://blog.csdn.net/qq_40875849

  7. elastic-job 新手指南&官网指南

    elastic-job 新手指南 Elastic-Job——分布式定时任务框架 官网帮助文档

  8. 安装部署Jenkins服务

    1.导入安装包 2.安装安装包 (1).安装JDK和maven 创建jdk存储目录 # mkdir /usr/jdk64/ 解压jdk到存储目录 # tar -zxvf jdk-8u191-linux ...

  9. [UE4]用Blenspace混合空间动画代替AimOffset动画偏移

  10. Oracle 在SQL语句中如何获取系统当前时间并进行操作

    select sysdate from dual;select to_char(sysdate,'yyyy-mm-dd hh24:mi:ss') from dual; select to_char(s ...