洛谷P3327 约数个数和 结论+莫比乌斯反演
就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数)
首先有引理(然而并没有证明):
\(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\)
带到原式里得到:
\(ans=\sum\limits_{i=1}\sum\limits_{j=1}\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\)
利用\(\mu\)函数的性质把方括号换掉:
\(ans=\sum\limits_{i=1}\sum\limits_{j=1}\sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{d|gcd(x,y)}\mu(d)\)
交换枚举主体:
\(ans=\sum\limits_{x=1}\sum\limits_{y=1}\sum\limits_{i=1}^{\lfloor\frac{N}{x}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{M}{y}\rfloor}\sum\limits_{d|gcd(x,y)}\mu(d)\)
进而得到:
\(ans=\sum\limits_{x=1}\sum\limits_{y=1}\lfloor\frac{N}{x}\rfloor\lfloor\frac{M}{y}\rfloor\sum\limits_{d|gcd(x,y)}\mu(d)\)
首先枚举\(d\):
\(ans=\sum\limits_{d=1}^{min\{N,M\}}\mu(d)\sum\limits_{x=1}^{\lfloor\frac{N}{d}\rfloor}\sum\limits_{y=1}^{\lfloor\frac{M}{d}\rfloor}\lfloor\frac{N}{x}\rfloor\lfloor\frac{M}{y}\rfloor\)
后面的顺序是无所谓的,交换一下:
\(ans=\sum\limits_{d=1}^{min\{N,M\}}\mu(d)\sum\limits_{x=1}^{\lfloor\frac{N}{d}\rfloor}\lfloor\frac{N}{x}\rfloor\sum\limits_{y=1}^{\lfloor\frac{M}{d}\rfloor}\lfloor\frac{M}{y}\rfloor\)
然后发现只要预处理一下后面的东西就可以整除分块了
贴一下代码:
#include <bits/stdc++.h>
using namespace std;
#define N 50000
int cnt, prime[N+5], mu[N+5], sum[N+5], notprime[N+5];
int b[N+5];
void init()
{
mu[1] = sum[1] = notprime[1] = 1;
for(int i = 2; i <= N; ++i)
{
if(!notprime[i]) prime[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && i*prime[j] <= N; ++j)
{
notprime[i*prime[j]] = 1;
if(i%prime[j] == 0)
{
mu[i*prime[j]] = 0;
break;
}
mu[i*prime[j]] = mu[i]*-1;
}
sum[i] = sum[i-1]+mu[i];
}
for(int i = 1; i <= N; ++i)
{
for(int l = 1, r; l <= i; l = r+1)
{
r = min(i/(i/l), i);
b[i] += (r-l+1)*(i/l);
}
}
}
int T, n, m;
int main()
{
scanf("%d", &T);
init();
while(T--)
{
scanf("%d%d", &n, &m);
long long ans = 0;
if(n > m) swap(n, m);
for(int l = 1, r; l <= n; l = r+1)
{
r = min(min(n/(n/l), m/(m/l)), n);
ans += 1LL*(sum[r]-sum[l-1])*b[n/l]*b[m/l];
}
printf("%lld\n", ans);
}
return 0;
}
洛谷P3327 约数个数和 结论+莫比乌斯反演的更多相关文章
- 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)
题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...
- 【BZOJ3994】约数个数和(莫比乌斯反演)
[BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\ ...
- BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...
- 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...
- 洛谷$P$3327 约数个数和 $[SDOI2015]$ 莫比乌斯反演
正解:莫比乌斯反演 解题报告: 传送门! 先考虑证明一个结论,$d_{i\cdot j}=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]$ 看起来就很对的样子,但还是证下趴$QwQ ...
- P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)
P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...
- 洛谷 [SDOI2015]约数个数和 解题报告
[SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- BZOJ3994:约数个数和(莫比乌斯反演:求[1,N]*[1,M]的矩阵的因子个数)
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Outpu ...
随机推荐
- 浅谈C#中的for循环与foreach循环
for循环和foreach循环其实可以算得上是从属关系的,即foreach循环是可以转化成for循环,但是for循环不一定能转换成foreach循环. 下面简单介绍一下两种循环: 1.for循环 代码 ...
- PyQtdeploy-V2.4 User Guide 中文 (二)
PyQtdeploy 用户指南 目录 介绍 与V1.0+的差异 作者 证书 安装 部署过程概览 PyQt的演示 构建演示 Android IOS Linux MacOS Windos 构建系统根目录 ...
- 【English】十六、时间相关
〇.其他 date: I have a date with her tomarrow. n.约会;日期,日子;时代,年代; vt.过时;使…显老;显示出…时代(或年龄);鉴定…的年代 vt.& ...
- Jmeter使用JDBC请求简介
1.现在oracle或mysql的jdbc然后放到jmeter的lib路径下 2.添加jdbc默认请求控件. 3.添加jdbc请求 4.发送 5.出现ORA-00911错误是由于sql语句错误,注意别 ...
- 神经网络MPLClassifier分类
代码: # -*- coding: utf-8 -*- """ Created on Fri Aug 24 14:38:56 2018 @author: zhen &qu ...
- Redis笔记-单机版安装
1.几个相关概念 概念 现象描述 规避措施 穿透 通过访问一个缓存中不存在的key,导致程序一定要在数据库中执行查询 将访问结果进行处理,如果返回是null,也存储在缓存中,可以将过期时间设置较短 雪 ...
- 阿里云CentOS安装PostgreSQL
在PostgreSQL官方文档:https://www.postgresql.org/download/linux/redhat/ 有选项和说明 1.检查有没安装:rpg -ga | grep pos ...
- SQLServer之创建提交读
事务提交读注意事项 语法:set transaction isolation level read committed. 数据库默认的是两个会话事务之间是提交读. READ COMMITTED指定语句 ...
- How to Make Fibonacci Confusing
前几天同事发了这么一段代码 (fn => (f => f(f))(f => fn(n => f(f)(n))) )(g => n => [1, 2].indexOf ...
- LVM 磁盘分区扩容
前提:将磁盘中未分区磁盘进行分区操作 https://www.cnblogs.com/guoxiangyue/p/10033367.html 然后进行vg扩容 pvcreate /dev/sdc lv ...