Introduction to Algorithms 2nd ed. Cambridge, MA: MIT Press, 2001. ISBN: 9780262032933.

Introduction and document distance

L1

Introduction and document distance

CLRS, chapters 1-3

L2

More document distance, mergesort

CLRS, sections 11.1-11.2

Binary search trees

L3

Airplane scheduling, binary search trees

CLRS, chapter 10 and sections 12.1-12.3

L4

Balanced binary search trees

CLRS, sections 13.1 and 13.2 for a different approach (red-black trees)

Hashing

L5

Hashing I: chaining, hash functions

L6

Hashing II:
table doubling, Karp-Rabin

CLRS,
chapter 17 and section 32.2

L7

Hashing
III: open addressing

CLRS,
section 11.4 (and 11.3.3 and 11.5 if interested)

Sorting

L8

Sorting I:
heaps

CLRS,
sections 2.1-2.3 and 6.1-6.2

L9

Sorting II:
heaps

CLRS,
sections 6.1-6.4

L10

Sorting
III: lower bounds, linear-time sorting

CLRS,
sections 8.1-8.4

L11

Sorting IV:
stable sorting, radix sort

Searching

L12

Searching
I: graph search, representations, and applications

CLRS,
sections 22.1-22.3 and B.4

L13

Searching
II: breadth-first search and depth-first search

CLRS,
sections 22.2-22.3

L14

Searching
III: topological sort and NP-completeness

CLRS,
sections 22.4 and 34.1-34.3 (at a high level)

Shortest
paths

L15

Shortest
paths I: intro

CLRS,
chapter 24 (intro)

L16

Shortest
paths II: Bellman-Ford

L17

Shortest
paths III: Dijkstra

CLRS,
sections 24.2-24.3

L18

Shortest
paths IV: Dijkstra speedups

Wagner,
Dorothea, and Thomas Willhalm. "Speed-Up Techniques for Shortest-Path
Computations." In Lecture Notes in Computer Science: Proceedings of
the 24th Annual Symposium on Theoretical Aspects of Computer Science
.
Berlin / Heidelberg: Springer, 2007. ISBN: 9783540709176. Read up to section
3.2.

Dynamic
programming

L19

Dynamic programming
I: memoization, Fibonacci, Crazy Eights, guessing

CLRS,
chapter 15

L20

Dynamic
programming II: longest common subsequence, parent pointers

L21

Dynamic
programming III: text justification, parenthesization, knapsack,
pseudopolynomial time, Tetris training

L22

Dynamic
programming IV: piano fingering, structural DP (trees), vertex cover,
dominating set, and beyond

For fun,
see papers on piano fingering and polyphonic piano fingering via DP:

Parncutt,
Richard, et al. "An Ergonomic Model of Keyboard Fingering for Melodic
Fragments." Music Perception 14, no. 4 (1997): 341-382.

Al Kasimi,
Alia, Eric Nichols, and Christopher Raphael. "A Simple Algorithm for
Automatic Generation of Polyphonic Piano Fingerings." In Proceedings
of the 8th International Conference on Music Information Retrieval
, 2007,
pp. 355-356.

For fun,
watch the Metamorphosis of the Cube video,
which illustrates a folding DP.

Numerics

L23

Numerics I

L24

Numerics II

Beyond
6.006

L25

Beyond
6.006: follow-on classes, geometric folding algorithms

Reading task(Introduction to Algorithms. 2nd)的更多相关文章

  1. [翻译] 提升树算法的介绍(Introduction to Boosted Trees)

    [翻译] 提升树算法的介绍(Introduction to Boosted Trees) 1. 有监督学习的要素 XGBoost 适用于有监督学习问题.在此类问题中,我们使用多特征的训练数据集 \(x ...

  2. 图形上下文导论(Introduction to SWT Graphics)zz

    图形上下文导论(Introduction to SWT Graphics) 摘要: org.eclipse.swt.graphics包(package),包含了管理图形资源的类.只要实现了org.ec ...

  3. 6.006 Introduction to Algorithms

    课程信息 6.006 Introduction to Algorithms

  4. 算法导论(Introduction to Algorithms )— 第十二章 二叉搜索树— 12.1 什么是二叉搜索树

    搜索树数据结构支持很多动态集合操作,如search(查找).minmum(最小元素).maxmum(最大元素).predecessor(前驱).successor(后继).insert(插入).del ...

  5. note of introduction of Algorithms(Lecture 3 - Part1)

    Lecture 3(part 1) Divide and conquer 1. the general paradim of algrithm as bellow: 1. divide the pro ...

  6. hdu 1885 Key Task(bfs+状态压缩)

    Problem Description The Czech Technical University years of its existence . Some of the university b ...

  7. hdu 3572 Task Schedule (dinic算法)

    pid=3572">Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  8. C#多线程编程のTask(任务全面解析)

    Task是.NET4.0加入的,跟线程池ThreadPool的功能类似,用Task开启新任务时,会从线程池中调用线程,而Thread每次实例化都会创建一个新的线程. 我们可以说Task是一种基于任务的 ...

  9. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题

    1.What does the analogy “AI is the new electricity” refer to?  (B) A. Through the “smart grid”, AI i ...

随机推荐

  1. ThinkPHP5+Apicloud+vue商城APP实战

    ThinkPHP5+Apicoud+vue商城APP实战 目录 章节1:项目概述 课时1apicloud平台介绍.04:38 课时2知识体系架构介绍.16:10 章节2:apicloud50分钟快速入 ...

  2. javaweb项目部署到tomcat服务器

    http://jingyan.baidu.com/album/a501d80c0c65baec630f5ef6.html?picindex=8

  3. 深浅拷贝,原生和JQuery方法实现

    7-17: 1:e.target.parentNode.remove();成功,查询一下JS原生的remove方法 2:复习JS DOM的原生操作方法,比如innerHTML(),insertBefo ...

  4. fastdfs group通过添加硬盘扩容

    通过给group的机器添加硬盘的方式,实现某个group的扩容. fastdfs在一台服务器支持多个store_path,每个store_path指向一个存储路径.url "M00/3F/E ...

  5. angularJS---自定义过滤器

    AngularJS另一个特点就是提供了过滤器,可以通过操作UNIX下管道的方式,操作数据结果. 通过使用管道,可以便于双向的数据绑定中视图的展现. 过滤器在处理过程中,将数据变成新的格式,而且可以使用 ...

  6. 爬虫之scrapy-splash

    什么是splash Splash是一个Javascript渲染服务.它是一个实现了HTTP API的轻量级浏览器,Splash是用Python实现的,同时使用Twisted和QT.Twisted(QT ...

  7. Python sys和shutil模块

    # !/user/bin/python # -*- coding: utf-8 -*- import sys # version 获取版本信息 sys.version # maxint 支持的最大in ...

  8. Java 读书笔记 (十七) Java 重写(Override)与重载(Overload)

    重写(Override) 重写是子类对父类的允许访问的方法的实现过程重新编写,返回值和形参都不能改变,即外壳不变,核心重写. // 如果重写不是相当于重新定义了一个方法?那为什么不直接写,还要exte ...

  9. util.go

    packagesego import(     "bytes"     "fmt" ) //输出分词结果为字符串 // //有两种输出模式,以"中华人 ...

  10. surging 微服务引擎 1.0 正式发布

    surging 是一个分布式微服务引擎,提供高性能RPC远程服务调用,服务引擎支持http.TCP.WS.Mqtt协议,采用Zookeeper.Consul作为surging服务的注册中心,集成了哈希 ...