Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

HINT

Source

Solution

  状压$dp$就是把状态压缩成二进制数,利用二进制的位运算改进算法的一种方法

  这道题就把单行每个格子是否放国王当成状态,这样每一行就是一个不超过$2^n$的数,然后就可以光明正大地用按位与运算判断是否攻击

  可以预处理单行所有合法状态,就不用每个二进制数枚举了。实际验证其合法方案数就是$Fibonacci_{n+2}$,比$2^n$小很多

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll f[][][], cnt[], a[]; bool check(int j, int k)
{
if(j & k << || j & k || j & k >> ) return false;
return true;
} int main()
{
int n, m, tot = ;
ll (*f0)[] = f[], (*f1)[] = f[], ans = ;
cin >> n >> m;
f1[][] = ;
for(int i = ; i < << n; ++i)
{
for(int j = ; j < ; ++j)
if(i & << j) ++cnt[i];
if(!(i & i << ) && !(i & i >> ))
a[++tot] = i;
}
for(int i = ; i <= n; ++i)
{
swap(f0, f1);
memset(f1, , );
for(int j = ; j <= tot; ++j)
for(int k = ; k <= tot; ++k)
for(int l = cnt[a[j]]; l <= (i - ) * n; ++l)
if(check(a[j], a[k]))
f1[l + cnt[a[k]]][a[k]] += f0[l][a[j]];
}
for(int i = ; i <= tot; ++i)
ans += f1[m][a[i]];
cout << ans << endl;
return ;
}

[BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)的更多相关文章

  1. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  2. 【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP

    经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J #include <iostre ...

  3. BZOJ 1087 [SCOI2005]互不侵犯King ——状压DP

    [题目分析] 沉迷水题,吃枣药丸. [代码] #include <cstdio> #include <cstring> #include <iostream> #i ...

  4. 互不侵犯king (状压dp)

    互不侵犯king (状压dp) 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.\(1\le n\ ...

  5. BZOJ-1087 互不侵犯King 状压DP+DFS预处理

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...

  6. bzoj1087 互不侵犯King 状压dp+bitset

    题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset ...

  7. [SCOI2005]互不侵犯(状压DP)

    嗝~算是状压DP的经典题了~ #\(\mathcal{\color{red}{Description}}\) 在\(N×N\)的棋盘里面放\(K\)个国王,使他们互不攻击,共有多少种摆放方案.国王能攻 ...

  8. 【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)

    题目链接 题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 这是道状压\(DP\)好题啊.. ...

  9. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

随机推荐

  1. 关闭sublime自动检测更新提示

    在使用sublime text 3的时候,有自动更新的话再打开的时候总是提醒更新,这让我这个强迫症重度患者非常难受,要取消自动检查更新,点击菜单栏"Preferences"=> ...

  2. python使用

    1. ipython 打印所有的输出变量 from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast ...

  3. shiro进行散列算法操作

    shiro最闪亮的四大特征:认证,权限,加密,会话管理 为了提高应用系统的安全性,这里主要关注shiro提供的密码服务模块: 1.加密工具类的熟悉 首先来个结构图,看看shiro提供了哪些加密工具类: ...

  4. Yii2中把路由地址中的%2F改为/

    第一步:找到/vendor/yiisoft/yii2/web/UrlManager.php 第二步:搜索$url = "$baseUrl?{$this->routeParam}=&qu ...

  5. windows系统php配置redis

    网上各种找教程各种不行,最后东拼西凑的终于把redis弄出来了. PHP版本:7.1.0: Redis版本:3.2.10: Windows版本:Windows7: 一.Windows下安装Redis ...

  6. SRE之道:创造软件系统来维护系统运行

    引言:本文作者Ben Treynor Sloss,Google 运维团队的高级副总裁,SRE 名称的发明者,在这里提供了他对SRE 的定义.  本文选自<SRE:Google运维解密>. ...

  7. PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注

    PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...

  8. 规模数据导入高效方式︱将数据快速读入R—readr和readxl包

    本文由雪晴数据网负责翻译整理,原文请参考New packages for reading data into R - fast作者David Smith.转载请注明原文链接http://www.xue ...

  9. mysql数据库字符集编码查看以及设置

      show variables like %char% character_set_client     | gb2312                           character_s ...

  10. VxWorks各部分初始化流程

    一)configAll.h中定义所有定置系统配置的宏 INCLUDED SOFTWARE FACILITIES:定义了基本组件: EXCLUDED FACILITIES:定义了扩充组件,缺省不包括: ...