题目描述

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

输入格式:

只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

输出格式:

所得的方案数

输入样例

3 2

输出样例

16


题(mang)目(mu)分析:

爆裂吧!!!五重循环!!!!

我们用三维数组dp[i][j][l]

表示前i行共放了l个king

且第i行状态为j的方案数

先把只考虑一行的合法方案枚举出来存入state[]数组

同时预处理dp[1][][]的所有情况

void check(ll x)
{
    //将状态x分别左/右移判断是否有相邻的king
    if( !(x & (x<<1) ) && !(x & (x>>1) ) )
    {
        ll num=get(x);//计算该状态有多少个king
        if(num>k) return;//若num>k,则不合法
        else state[++cnt]=x,sum[cnt]=num,dp[1][x][num]=1;
        //储存该状态,并更新dp数组
    }
}

对于0<= x <= (1<< n)-1都要调用

接下来状态转移方程

dp[i][j][l]+=dp[i-1][t][p]

for(int i=2;i<=n;i++)//第1行已预处理,所以从第二行开始递推
for(int j=1;j<=cnt;j++)//枚举第2行状态
for(int l=0;l<=k;l++)//枚举前i行所放king数量
for(int t=1;t<=cnt;t++)//枚举i-1行状态
for(int p=0;p<=l;p++)//枚举前i-1行所放king数量
if( test(state[j],state[t]) && p+sum[j]==l )//判断是否合法
dp[i][state[j]][l]+=dp[i-1][state[t]][p];//更新

最后ans等于所有dp[n][j][k]相加


#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;

ll n,k;
ll state[1010];
ll sum[1010];
ll dp[10][1010][100];
ll cnt;
ll ans;

ll get(ll x)
{
    ll num=0;
    while(x>0)
    {
        if(x&1) num++;
        x=x>>1;
    }
    return num;
}

void check(ll x)
{
    if( !(x & (x<<1) ) && !(x & (x>>1) ) )
    {
        ll num=get(x);
        if(num>k) return;
        else state[++cnt]=x,sum[cnt]=num,dp[1][x][num]=1;
    }
}

bool test(ll x,ll y)
{
    if(x&y) return false;
    if((x<<1)&y) return false;
    if((x>>1)&y) return false;
    return true;
}

int main()
{
    cin>>n>>k;
    for(int i=0;i<=(1<<n)-1;i++)
    check(i);

    for(int i=2;i<=n;i++)
    for(int j=1;j<=cnt;j++)
    for(int l=0;l<=k;l++)
    for(int t=1;t<=cnt;t++)
    for(int p=0;p<=l;p++)
    if( test(state[j],state[t]) && p+sum[j]==l )
    dp[i][state[j]][l]+=dp[i-1][state[t]][p];

    for(int i=1;i<=cnt;i++)
    ans+=dp[n][state[i]][k];

    cout<<ans;
    return 0;
}

洛谷P1896 [SCOI2005]互不侵犯King【状压DP】的更多相关文章

  1. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

  2. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  3. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  4. 【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP

    经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J #include <iostre ...

  5. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  6. 洛谷 P1896 [SCOI2005]互不侵犯 (状态压缩DP)

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  7. 洛谷 P1896 [SCOI2005]互不侵犯King

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...

  8. BZOJ 1087 [SCOI2005]互不侵犯King ——状压DP

    [题目分析] 沉迷水题,吃枣药丸. [代码] #include <cstdio> #include <cstring> #include <iostream> #i ...

  9. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

随机推荐

  1. Putty(菩提)远程连接服务器教程听语音

    Putty是一款优秀的免费串行接口连接软件,由于其绿色和性能深受业界好评,绿色是指putty使用便捷只需要将putty下载到电脑,无需安装,只需要在电脑上新建一个快捷方式就可以使用.出色的性能是指pu ...

  2. 版本控制——TortoiseSVN (3)多版本发布

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  3. Python自建logging模块

    本章将介绍Python内建模块:日志模块,更多内容请从参考:Python学习指南 简单使用 最开始,我们用最短的代码体验一下logging的基本功能. import logging logger = ...

  4. SDP(3):ScalikeJDBC- JDBC-Engine:Fetching

    ScalikeJDBC在覆盖JDBC基本功能上是比较完整的,而且实现这些功能的方式比较简洁,运算效率方面自然会稍高一筹了.理论上用ScalikeJDBC作为一种JDBC-Engine还是比较理想的:让 ...

  5. idea 远程调试 tomcat web应用

    最近在做的一个东西,测试环境和本地环境差距太大,本地能运行的代码,放到测试环境上到处报错,哪里哪里都连不上,所以决定把代码部署到远程服务器上调试,节省时间. 网上看了很多教程,大部分都是互相抄来抄去, ...

  6. C#总结(四)调用C++动态库

    由于公司很多底层的SDK,都是C++开发,上层的应用软件却是C# Winform程序.在实际工作的过程中,就经常碰到了C# 程序调用C++ 动态库的问题.最近一直在和C++ 打交道,C# 怎么调用C+ ...

  7. java面向对象的三大特性——多态

    多态 所谓多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在程序运行期间才确定,即一个引用变量倒底会指向哪个类的实例对象,该引用变量发出的方法调用到底 ...

  8. 企业级分布式存储应用与实战-mogilefs实现

    Mogilefs是什么 MogileFS是一个开源的分布式文件存储系统,由LiveJournal旗下的Danga Interactive公司开发.Danga团队开发了包括 Memcached.Mogi ...

  9. python-networkx学习(1)

    介绍: networkx是python的一个库,它为图的数据结构提供算法.生成器以及画图工具.近日在使用ryu进行最短路径获取,可以通过该库来简化工作量.该库采用函数方式进行调用相应的api,其参数类 ...

  10. AutoCAD开发选择----ObjectARX还是.net API(转载)

    本文基于AutoCAD 2006新推出的.NET API为工具,介绍了在.NET平台下对AutoCAD进行二次开发的技术,并与目前常用的VBA.ObjectARX作了对比.同时讨论了如何弥补.NET ...