python单线程,多线程和协程速度对比
在某些应用场景下,想要提高python的并发能力,可以使用多线程,或者协程。比如网络爬虫,数据库操作等一些IO密集型的操作。下面对比python单线程,多线程和协程在网络爬虫场景下的速度。
一,单线程。
单线程代
1 #!/usr/bin/env
2 # coding:utf8
3 # Author: hz_oracle import MySQLdb
import gevent
import requests
import time class DbHandler(object):
def __init__(self, host, port, user, pwd, dbname):
self.host = host
self.port = port
self.user = user
self.pwd = pwd
self.db = dbname def db_conn(self):
try:
self.conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.pwd, db=self.db, charset="utf8")
self.cursor = self.conn.cursor()
return 1
except Exception as e:
return 0 def get_urls(self, limitation):
sql = """select pic from picurltable limit %s""" % limitation
urls_list = list()
try:
self.cursor.execute(sql)
fetchresult = self.cursor.fetchall()
for line in fetchresult:
urls_list.append(line[0])
print len(urls_list)
except Exception as e:
print u"数据库查询失败:%s" % e
return []
return urls_list def db_close(self):
self.conn.close() def get_pic(url):
try:
pic_obj = requests.get(url).content
except Exception as e:
print u"图片出错"
return ""
filename = url.split('/')[-2]
file_path = "./picture/" + filename + '.jpg'
fp = file(file_path, 'wb')
fp.write(pic_obj)
fp.close()
return "ok" def main():
start_time = time.time()
db_obj = DbHandler(host='127.0.0.1', port=3306, user='root', pwd='123456', dbname='pic')
db_obj.db_conn()
url_list = db_obj.get_urls(100)
map(get_pic, url_list)
#for url in url_list:
# get_pic(url)
end_time = time.time()
costtime = float(end_time) - float(start_time)
print costtime
print "download END" if __name__ == "__main__":
main()
运行结果
100
45.1282339096
download END
单线程情况下,下载100张图片花了45秒。
再来看多线程的情况下。
#!/usr/bin/env python
# coding:utf8
# Author: hz_oracle import MySQLdb
import gevent
import requests
import time
import threading
import Queue lock1 = threading.RLock()
url_queue = Queue.Queue()
urls_list = list() class DbHandler(object):
def __init__(self, host, port, user, pwd, dbname):
self.host = host
self.port = port
self.user = user
self.pwd = pwd
self.db = dbname def db_conn(self):
try:
self.conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.pwd, db=self.db, charset="utf8")
self.cursor = self.conn.cursor()
return 1
except Exception as e:
return 0 def get_urls(self, limitation):
sql = """select pic from picurltable limit %s""" % limitation
try:
self.cursor.execute(sql)
fetchresult = self.cursor.fetchall()
for line in fetchresult:
url_queue.put(line[0])
except Exception as e:
print u"数据库查询失败:%s" % e
return 0
return 1 def db_close(self):
self.conn.close() class MyThread(threading.Thread):
def __init__(self):
super(MyThread, self).__init__() def run(self):
url = url_queue.get()
try:
pic_obj = requests.get(url).content
except Exception as e:
print u"图片出错"
return ""
filename = url.split('/')[-2]
file_path = "./picture/" + filename + '.jpg'
fp = file(file_path, 'wb')
fp.write(pic_obj)
fp.close() def main():
start_time = time.time()
db_obj = DbHandler(host='127.0.0.1', port=3306, user='root', pwd='', dbname='pic')
db_obj.db_conn()
db_obj.get_urls(100)
for i in range(100):
i = MyThread()
i.start()
while True:
if threading.active_count()<=1:
break
end_time = time.time()
costtime = float(end_time) - float(start_time)
print costtime
print "download END" if __name__ == "__main__":
main()
运行结果
15.408192873
download END
启用100个线程发现只要花15秒即可完成任务,100个线程可能不是最优的方案,但较单线程有很明显的提升。接着再来看协程。
协程代码
#!/usr/bin/env python
# coding:utf8
# Author: hz_oracle import MySQLdb
import requests
import time
import threading
import Queue from gevent import monkey; monkey.patch_all()
import gevent class DbHandler(object):
def __init__(self, host, port, user, pwd, dbname):
self.host = host
self.port = port
self.user = user
self.pwd = pwd
self.db = dbname def db_conn(self):
try:
self.conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.pwd, db=self.db, charset="utf8")
self.cursor = self.conn.cursor()
return 1
except Exception as e:
return 0 def get_urls(self, limitation):
urls_list = list()
sql = """select pic from picurltable limit %s""" % limitation
try:
self.cursor.execute(sql)
fetchresult = self.cursor.fetchall()
for line in fetchresult:
urls_list.append(line[0])
except Exception as e:
print u"数据库查询失败:%s" % e
return []
return urls_list def db_close(self):
self.conn.close() def get_pic(url):
try:
pic_obj = requests.get(url).content
except Exception as e:
print u"图片出错"
return ""
filename = url.split('/')[-2]
file_path = "./picture/" + filename + '.jpg'
fp = file(file_path, 'wb')
fp.write(pic_obj)
fp.close()
return "ok" def main():
start_time = time.time()
db_obj = DbHandler(host='127.0.0.1', port=3306, user='root', pwd='123456', dbname='pic')
db_obj.db_conn()
url_list = db_obj.get_urls(100)
gevent.joinall([gevent.spawn(get_pic,url) for url in url_list]) end_time = time.time()
costtime = float(end_time) - float(start_time)
print costtime
print "download END" if __name__ == "__main__":
main()
运行结果
10.6234440804
download END
使用协程发现只花了10秒多,也就是三种方法中最快的。
总结:
三种方法中,单线程最慢,多线程次之,而协程最快。 不过如果对多线程进行优化,也可能变快,这里不讨论。
python单线程,多线程和协程速度对比的更多相关文章
- Python并发编程二(多线程、协程、IO模型)
1.python并发编程之多线程(理论) 1.1线程概念 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程(流水线的工作需要电源,电源就相当于 ...
- python 多进程,多线程,协程
在我们实际编码中,会遇到一些并行的任务,因为单个任务无法最大限度的使用计算机资源.使用并行任务,可以提高代码效率,最大限度的发挥计算机的性能.python实现并行任务可以有多进程,多线程,协程等方式. ...
- Python并发编程——多线程与协程
Pythpn并发编程--多线程与协程 目录 Pythpn并发编程--多线程与协程 1. 进程与线程 1.1 概念上 1.2 多进程与多线程--同时执行多个任务 2. 并发和并行 3. Python多线 ...
- 深入浅析python中的多进程、多线程、协程
深入浅析python中的多进程.多线程.协程 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源 ...
- python并发编程之协程知识点
由线程遗留下的问题:GIL导致多个线程不能真正的并行,CPython中多个线程不能并行 单线程实现并发:切换+保存状态 第一种方法:使用yield,yield可以保存状态.yield的状态保存与操作系 ...
- Cpython解释器下实现并发编程——多进程、多线程、协程、IO模型
一.背景知识 进程即正在执行的一个过程.进程是对正在运行的程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其他所有内容都 ...
- Python之并发编程-协程
目录 一.介绍 二. yield.greenlet.gevent介绍 1.yield 2.greenlet 3.gevent 一.介绍 协程:是单线程下的并发,又称微线程,纤程.英文名Coroutin ...
- python进阶——进程/线程/协程
1 python线程 python中Threading模块用于提供线程相关的操作,线程是应用程序中执行的最小单元. #!/usr/bin/env python # -*- coding:utf-8 - ...
- 32 python 并发编程之协程
一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...
随机推荐
- iOS中 Animation 动画大全 韩俊强的博客
每日更新关注:http://weibo.com/hanjunqiang 新浪微博! iOS开发者交流QQ群: 446310206 1.iOS中我们能看到的控件都是UIView的子类,比如UIButt ...
- Chapter 1 Securing Your Server and Network(13):配置端点安全性
原文出处:http://blog.csdn.net/dba_huangzj/article/details/38489765,专题目录:http://blog.csdn.net/dba_huangzj ...
- SQL Server扫盲系列——镜像篇
为方便查看,并以专题形式展示,所以我会把一些文章整合起来.本部分为SQL Server镜像系列: 本文出处:http://blog.csdn.net/dba_huangzj/article/detai ...
- 【一天一道LeetCode】#33. Search in Rotated Sorted Array
一天一道LeetCode 本系列文章已全部上传至我的github,地址: https://github.com/Zeecoders/LeetCode 欢迎转载,转载请注明出处 (一)题目 Suppos ...
- Linux/Android多点触摸协议
链接点击打开链接 关于Linux多点触摸协议大家可以参考kernel中的文档:https://www.kernel.org/doc/Documentation/input/multi-touch-pr ...
- MSM平台RPM
Software Component Block Diagram RPM(Resource Power Manager)是高通MSM平台另外加的一块芯片,虽然与AP芯片打包在一起,但其是一个独立的AR ...
- Hive操作语句实例讲解(帮助你了解 桶 bucket)
http://blog.sina.com.cn/s/blog_66474b16010182yu.html这篇可以较好地理解什么是外部表external #创建表人信息表 person(String ...
- Android 自定义View -- 简约的折线图
转载请注明出处:http://write.blog.csdn.net/postedit/50434634 接上篇 Android 圆形百分比(进度条) 自定义view 昨天分手了,不开心,来练练自定义 ...
- APP-FND-00676: 弹性域例程 FDFGDC 无法读取为此说明性弹性域指定的默认引用字段
路径: AR: 设置- 财务系统 - 弹性域- 说明性 -注册 手工增加: RECEIPT_METHOD_ID 路径: AR: 设置- 财务系统 - 弹性域- 说明性 -段 路径:收款 - 收款 点 ...
- JSONP获取Twitter和Facebook文章数
原文链接: Retrieve Twitter and Facebook Counts with JSON 翻译人员: 铁锚 原文日期: 2014年02月19日 翻译日期: 2014年02月22日 !! ...