You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N. We define dist(a, b) as the number of edges on the path from node a to node b.

Each node has a color, white or black. All the nodes are black initially.

we will ask you to perfrom some instructions of the following form:

0 i : change the color of i-th node(from black to white, or from white to black).

1 v : ask for the minimum dist(u, v), node u must be white(u can be equal to v). Obviously, as long as node v is white, the result will always be 0.

Input

In the first line there is an integer N (N <= 100000)

In the next N-1 lines, the i-th line describes the i-th edge: a line with two integers a b denotes an edge between a and b.

In the next line, there is an integer Q denotes the number of instructions (Q <= 100000)

In the next Q lines, each line contains an instruction "0 i" or "1 v"

Output

For each "1 v" operation, print one integer representing its result. If there is no white node in the tree, you should write "-1".

Example

解题报告:

写了这个题之后算是对点分治有了个新认识,感觉以前写的都是假的啊.

突然发现任意两个点之间的路径仿佛都只会交在一个重心上,这样我们就很好弄了,对每一个重心维护一个小根堆,如果0操作弄出一个白点,我们就把这个白点加入到包含它的重心所在的堆里面,然后询问就直接查询包含该点的重心,用\(disi,v+q[i].top()\)去更新答案,i为某重心,q为该重心的堆,复杂度\(O(nlog2n)\)

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <queue>
#include <vector>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=100005,inf=2e8;
int gi(){
int str=0;char ch=getchar();
while(ch>'9' || ch<'0')ch=getchar();
while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
return str;
}
int n,num=0,head[N],to[N<<1],nxt[N<<1],root=0,f[N]={inf},son[N],sum;
bool vis[N];
struct node{
int x,id;
bool operator <(const node &pp)const{
return x>pp.x;
}
};
priority_queue<node>q[N];
void link(int x,int y){
nxt[++num]=head[x];to[num]=y;head[x]=num;
}
int Head[N],NUM=0,To[N*30],Dis[N*30],Next[N*30];
void add(int x,int y,int z){
Next[++NUM]=Head[x];To[NUM]=y;Dis[NUM]=z;Head[x]=NUM;
}
bool col[N];
void getdis(int x,int last,int dist){
add(x,root,dist);
int u;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(u==last || vis[u])continue;
getdis(u,x,dist+1);
}
}
void getroot(int x,int last){
int u;son[x]=1;f[x]=0;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(vis[u] || u==last)continue;
getroot(u,x);
son[x]+=son[u];
f[x]=Max(f[x],son[u]);
}
f[x]=Max(f[x],sum-son[x]);
if(f[x]<f[root])root=x;
}
void dfs(int x){
int u;vis[x]=true;
getdis(x,x,0);
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(vis[u])continue;
root=0;sum=son[u];getroot(u,x);
dfs(root);
}
}
void updata(int x){
col[x]^=1;
if(col[x])
for(int i=Head[x];i;i=Next[i])
q[To[i]].push((node){Dis[i],x});
}
int query(int x){
if(col[x])return 0;
int ret=inf;
for(int i=Head[x];i;i=Next[i]){
int u=To[i];
while(!q[u].empty() && !col[q[u].top().id])q[u].pop();
if(!q[u].empty())ret=Min(ret,q[u].top().x+Dis[i]);
}
return ret==inf?-1:ret;
}
void work()
{
int x,y;
n=gi();
for(int i=1;i<n;i++){
x=gi();y=gi();
link(x,y);link(y,x);
}
sum=n;root=0;getroot(1,1);
dfs(root);
int Q=gi(),flag;
while(Q--){
flag=gi();x=gi();
if(!flag)updata(x);
else printf("%d\n",query(x));
}
} int main()
{
work();
return 0;
}

SPOJ Query on a tree V的更多相关文章

  1. 2019.02.17 spoj Query on a tree V(链分治)

    传送门 题意简述: 给你一棵nnn个黑白点的树,初始全是黑点. 现在支持给一个点换颜色或者求整颗树中离某个点最近的白点跟这个点的距离. 思路: 考虑链分治维护答案,每个链顶用一个堆来维护答案,然后对于 ...

  2. QTREE5 - Query on a tree V——LCT

    QTREE5 - Query on a tree V 动态点分治和动态边分治用Qtree4的做法即可. LCT: 换根后,求子树最浅的白点深度. 但是也可以不换根.类似平常换根的往上g,往下f的拼凑 ...

  3. SPOJ QTREE Query on a tree V

    You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are number ...

  4. SPOJ QTREE Query on a tree V ——动态点分治

    [题目分析] QTREE4的弱化版本 建立出分治树,每个节点的堆表示到改点的最近白点距离. 然后分治树上一直向上,取min即可. 正确性显然,不用担心出现在同一子树的情况(不会是最优解),请自行脑补. ...

  5. SPOJ - QTREE5 Query on a tree V 边分治

    题目传送门 题意:给你一棵树, 然后树上的点都有颜色,且原来为黑,现在有2个操作,1 改变某个点的颜色, 2 询问树上的白点到u点的最短距离是多少. 题解: 这里用的还是边分治的方法. 把所有东西都抠 ...

  6. SPOJ Query on a tree 树链剖分 水题

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  7. Spoj Query on a tree III

    题目描述 给出N个点的一棵树(N-1条边),节点有白有黑,初始全为白 有两种操作: 0 i : 改变某点的颜色(原来是黑的变白,原来是白的变黑) 1 v : 询问1到v的路径上的第一个黑点,若无,输出 ...

  8. SPOJ Query on a tree III (树剖(dfs序)+主席树 || Splay等平衡树)(询问点)

    You are given a node-labeled rooted tree with n nodes. Define the query (x, k): Find the node whose ...

  9. SPOJ QTREE4 SPOJ Query on a tree IV

    You are given a tree (an acyclic undirected connected graph) with N nodes, and nodes numbered 1,2,3. ...

随机推荐

  1. Scrum 冲刺 第六日

    Scrum 冲刺 第六日 目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如 ...

  2. IQKeyboardManager使用方法

    使用方法: 将IQKeyboardManager 和 IQSegmentedNextPrevious类文件加进项目中.在AppDelegate文件中写下以下一行代码: [IQKeyBoardManag ...

  3. vue 在已有的购买列表中(数据库返回的数据)修改商品数量

    连续加班一个月  连续通宵三天 到最后还是少了一个功能 心碎 简介:一个生成好的商品列表(数据库返回的数据) 首先拿到我们需要渲染的数组 在data中定义 我是在测试的时候 直接写了两条数据 下面开始 ...

  4. LeetCode & Q88-Merge Sorted Array-Easy

    Array Two Pointers Description: Given two sorted integer arrays nums1 and nums2, merge nums2 into nu ...

  5. kubernetes入门(08)kubernetes单机版的安装和使用

    kubectl get - 类似于 docker ps ,查询资源列表 kubectl describe - 类似于 docker inspect ,获取资源的详细信息 kubectl logs - ...

  6. python入门(3)python的解释器

    python入门(3)python的解释器 Python写的程序是以.py为扩展名的文本文件.要运行代码,就需要Python解释器去执行.py文件. 由于整个Python语言从规范到解释器都是开源的, ...

  7. 赛码网算法: 军训队列( python实现 )

    军训队列 题目描述某大学开学进行军训队列训练,将学生从一开始按顺序依次编号,并排成一行横队,训练的规则如下:从头开始一至二报数,凡报到二的出列剩下的依次向前靠拢,再从头开始进行一至三报数,凡报到三的出 ...

  8. Spring之AOP编程

    一.AOP简介     AOP的英文全称是Aspect Oriented Programming,意为:面向切面编程.     AOP采取横向抽取的机制,取代了传统纵向继承体系的代码复用.AOP常用于 ...

  9. MySql中的varchar长度究竟是字节还是字符

    今天在设计表的时候,遇到个小问题,由于不知道未来将要存储的数据有多长(数据是通过第三方http接口提供的,根据sample显示,数据大概是如下:) 也就是6个字符. 我在设计表的时候,有点犹豫,本来准 ...

  10. 算法 排序NB二人组 堆排序 归并排序

    参考博客:基于python的七种经典排序算法     常用排序算法总结(一) 序前传 - 树与二叉树 树是一种很常见的非线性的数据结构,称为树形结构,简称树.所谓数据结构就是一组数据的集合连同它们的储 ...