TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 13262   Accepted: 6412

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
 
 
/*
poj 2318 叉积+二分 一个矩形,有被若干直线分成N个格子,给出一个点的坐标,问你该点位于哪个点中。
知识点:其实就是点在凸四边形内的判断,若利用叉积的性质,可以二分求解。 叉积的结果也是一个向量,是垂直于向量a,b所形成的平面,如果看成三维坐标的话是在 z 轴上,上面结果是它的模。
方向判定:右手定则,(右手半握,大拇指垂直向上,四指右向量a握向b,大拇指的方向就是叉积的方向)
叉积的意义:
1:其结果是a和b为相邻边形成平行四边形的面积。
2:结果有正有负,有sin(a,b)可知和其夹角有关,夹角大于180°为负值。
本题可以通过叉积的正负来判断它在直线的哪边 hhh-2016-05-04 19:49:26
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
const int maxn = 40010;
int tot;
int mod;
int n,m;
int x1,x2,y1,y2; struct Point
{
int x,y;
Point() {}
Point(int _x,int _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
int operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
};
int tans[maxn];
Line line[maxn];
Point p;
int cal(int mid)
{
return (line[mid].t-p)^(line[mid].s-p);
} int main()
{
int flag = 1;
while(scanf("%d",&n) && n)
{
if(!flag)
printf("\n");
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
flag = 0;
line[n] = Line(Point(x2,y1),Point(x2,y2));
memset(tans,0,sizeof(tans));
for(int i = 0; i < n; i++)
{
scanf("%d%d",&x1,&x2);
line[i] = Line(Point(x1,y1),Point(x2,y2));
}
while(m--)
{
scanf("%d%d",&x1,&y1);
int l = 0, r = n;
int mid,ans;
p = Point(x1,y1);
while(l <= r)
{
mid = (l+r)>>1;
if(cal(mid) > 0)
{
ans = mid;
r = mid-1;
}
else
{
l = mid+1;
}
}
tans[ans]++;
}
for(int i = 0; i <= n; i++)
{
printf("%d: %d\n",i,tans[i]);
}
}
return 0;
}

  

poj 2318 叉积+二分的更多相关文章

  1. POJ 2318 叉积判断点与直线位置

    TOYS   Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom ...

  2. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  3. POJ 2318 (叉积) TOYS

    题意: 有一个长方形,里面从左到右有n条线段,将矩形分成n+1个格子,编号从左到右为0~n. 端点分别在矩形的上下两条边上,这n条线段互不相交. 现在已知m个点,统计每个格子中点的个数. 分析: 用叉 ...

  4. poj 2318(叉积判断点在线段的哪一侧)

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13120   Accepted: 6334 Description ...

  5. POJ 2318 TOYS | 二分+判断点在多边形内

    题意: 给一个矩形的区域(左上角为(x1,y1) 右下角为(x2,y2)),给出n对(u,v)表示(u,y1) 和 (v,y2)构成线段将矩形切割 这样构成了n+1个多边形,再给出m个点,问每个多边形 ...

  6. POJ 2318/2398 叉积性质

    2318 2398 题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里. 思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧 ...

  7. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

随机推荐

  1. 微信支付get_brand_wcpay_request:fail

    最近做了微信支付功能,和后端一起踩坑中,微信一直报错:get_brand_wcpay_request:fail 出现该问题的原因: 1.生成的sign签名有问题 2.支付授权目录配置有问题 在经过仔细 ...

  2. SourceTree 实现 git flow 流程

    为什么使用 git 和 git flow,这篇文章 深入理解学习Git工作流 的内容相信能够给你一个完整的答案. 我们以使用SVN的工作流来使用git有什么不妥? git 方便的branch在哪里,团 ...

  3. Huginn实现自动通过slack推送豆瓣高分电影

    博客搬迁至https://blog.wangjiegulu.com RSS订阅:https://blog.wangjiegulu.com/feed.xml 原文链接:https://blog.wang ...

  4. JAVA_SE基础——3.Java程序的开发流程

    上一篇,写的是JAVA的环境变量的配置,今天我抽空写篇Java程序的开发流程,下面的教程是我结合书本和毕向东老师的视频写下的心的~ 在没有真正写Java程序前,首先需要了解Java程序的开发过程. S ...

  5. nodejs 使用CAS 实现 单点登录(SSO) 【开源库实现,简单】

    大部分企业使用 java 开发业务系统, 针对java cas的认证 demo 比较多 ,还有PHPCAS ,标准的参考这里: phpCAS 的使用 整理登录流程如下图,图片来自网络 找了不少资料,n ...

  6. axure 预览"HTTP/1.1 302 Found"

    使用Axure编辑原型时,点击预览出现"HTTP/1.1 302 Found" 第一想到的就是重新安装Axure和检查原型文件是否损坏,验证后证明前Axure和.rp文件都是完好的 ...

  7. 在Android项目中使用Java8

    前言 在过去的文章中我介绍过Java8的一些新特性,包括: Java8新特性第1章(Lambda表达式) Java8新特性第2章(接口默认方法) Java8新特性第3章(Stream API) 之前由 ...

  8. vue.js+socket.io+express+mongodb打造在线聊天[二]

    vue.js+socket.io+express+mongodb打造在线聊天[二] 在线地址观看 http://www.chenleiming.com github地址 https://github. ...

  9. uva 1411 Ants

    题意: 一个平面上有n个黑色的点,n个白色的点,要求黑色的点与白色点之间一一配对,且线段之间不相交. 思路: 线段不相交并不好处理,想了很久想不出,所以看了蓝书的讲解. 一个很明显的结论是,不相交的线 ...

  10. H5 仿ios select滚动选择器。框架。

    官网上描述的很详细,并且开源,轻量. 有兴趣的可以去尝试官网上的demo写的也很好,并且每个参数也解释的很详细. http://zhoushengfe.com/iosselect/website/in ...