【无语凝噎(wordless)】
·题目:
西施与范蠡泛舟而去……不对,场景不对,咳咳。在甄嬛前往蓬莱洲之前,她与皇上在碧桐书院告别。为了这可能会长达数月的离别,两个人都似乎有很多话要对对方说,却都无语凝噎。这时,皇上突然发话:“嬛嬛啊(桓桓?),既然你我都说不出话来,那这时间也不好打发,我们来数三角形吧。”为了满足皇上突发而来的童趣,甄嬛欣然陪同了。可这……纸上是一张n*m的格子方阵,即有(n+1)*(m+1)个格点。每个格子都是边长为1的正方形。而他们要数的,则是任取3个格点作为三角形的顶点所形成的直角三角形且该三角形面积为s/2的个数。甄嬛数的头都晕了,她现在只想知道满足条件的三角形个数 mod 1000000007。
输入格式:第一行3个正整数n,m,s, 意义如题
输出格式:仅一个整数,为甄嬛与满足条件的三角形个数 mod (10^9+7)
样例输入:1 1 1
样例输出:4
数据范围:
对于10%的数据:n<=10
对于另外40%的数据:s为质数
对于100%的数据:1<=n,m,s<=108
时间限制: 1S
空间限制: 128M
·题目混乱,述大意:
给定长度为n*m的相同正方形方格组成的棋盘,求出使用格点组成的三角形个数,答案取模1000000007。(n,m<=108)。
·分析:
在草稿纸上画图时容易发现一些普遍规律和特例,此时大米饼认为应该先里找出总体的方法,再进行特例的处理(如去重),这样很美妙。一个非常简单的思路是,设这个三角形的边长为a,b,那么在棋盘上就有如下摆法:
同时要算上棋盘旋转90o后的情况,不要忘记一个三角形可以在同一个长方形里有四种摆法,所以对于这个形状的三角形的个数P可以表示为:
P=(n-a+1)*(m-b+1)*4+(n-b+1)*(m-a+1)*4
读题一会儿后意识到一个问题是三角形的边可以是斜着的。上文的天真方法连正确答案都无法得出:
在经历初中数学洗礼的我们开始回想起中考时的一些琐碎,发现好像很多几何题都是这样子的——有关相似直角三角形。清晰地发现,这些三角形的直角边无非是由两个相似的直角三角形的斜边组成:
依照这个思路,做一些便于代码书写的分析。首先使用a,b表示出橙色三角形的面积S=(a2+b2)*k[注意,k不一定偏要为整数,想一想,不为什么]。我们看一看数据范围:n,m<=100000000,开方后为10000,说明最坏情况循环下循环次数:108。不过,这里我们需要保证a,b,ak,bk均为整数,也就是分解数——“与分解有关的时间复杂度稳定性很差”,我们可以直接暴力枚举a,b,找到所有满足面积公式条件的二元组(a,b),并由此可以推出对应的k值。
与此同时,一个更加振奋人心的消息——上文那种边与格子平行的情况可以看做(a,b)其中一个为0的情况,所以我们争取一起处理。
这样看来,似乎只需要进行一个二重循环枚举a,b然后使用类似于上文的天真方法计算答案就可以了。在激动之余,你发现还有一些特殊情况。
为了有序性和避免重复,我们规定枚举二元组(a,b)必须满足k的值大于等于1。我们先列出一般情况的答案计算方法。对于一组(a,b)构成面积为S的三角形的个数P计算方法:
对于这个三角形,我们只需要求出其所在的最小矩形的长宽就可以了。由于a,b的大小关系不确定。所以:
宽长度为:max(a,bk),长长度为:b+ak
我们设长宽分别为p,q,那么S的个数为:
P=(n-p+1)*(m-q+1)*4+(n-p+1)*(m-q+1)*4
最后我们着眼于两种特殊情况的处理:
[1] k==1:
由于a,b大小不定,所以如果(a,b)满足,那么(b,a)也是合法的,此时相当于计算了8次,但是我们发现,由于k值为1,所以相似三角形为等腰,重复计算了,所以处理方式是除以二。
[2] a==0||b==0:
这表明是一个直角边和格子边平行的直角三角形。设u>0,如果二元组(u,0)合法,那么(0,u)同样合法,但是!(u,0),(0,u)形成的三角形形状完全相同,而(u,v),(v,u)[v>0]形成的三角形形状是相同或者不同,但是相同的情况被[1]的处理方式而排除,可是(u,0)(0,u)的重复计算没有排除。随意处理方式也是除以二。
考试结束后其实很多STD的写法是将(a,b)中是否有0进行分开计算,这样更容易理解。但是追求更深刻理解和短码的大米饼毫不犹豫地视作一种情况讨论。代码来啦:
#include<stdio.h>
#include<algorithm>
#define ll long long
#define M 1000000007
#define go(i,a,b) for(ll i=a;i<=b;i++)
using namespace std;
ll n,m,s,t,res,ans,A,B,T,X,Y;
ll Cal(ll a,ll b){return max(1ll*,n-a+)*max(1ll*,m-b+)%M;}
int main()
{
scanf("%lld%lld%lld",&n,&m,&s);
go(a,,M){if(a*a>s)break;
go(b,a?:,M){if((res=a*a+b*b)>s)break;
if(1ll*a*s%res||1ll*b*s%res)continue;
A=a*s/res,B=b*s/res;T=res==s?:;
if(a==||b==)T/=;X=b+A;Y=max(a,B);
(ans+=T*Cal(X,Y)+T*Cal(Y,X))%=M;
}}printf("%lld",(ans%M+M)%M);return ;
}//Paul_Guderian
如果青春是一捧鲜花,我愿把它洒给你,
如果生命是一场燃烧的旧梦,
我愿在梦醒前燃烬…… ————汪峰《忧郁的眼睛》
【无语凝噎(wordless)】的更多相关文章
- 【转】关于phpcms的学习
在实现PHPCMS网站过程中,根据业务需求,我们遇到很多问题,特此总结如下,以便大家参考学习. [1]PHPCMS V9系统目录简析 在研究所有问题之前,请先了解一下系统的文件目录结构,具体如下图所示 ...
- PHPCMS V9 学习总结
在实现PHPCMS网站过程中,根据业务需求,我们遇到很多问题,特此总结如下,以便大家参考学习. [1]PHPCMS V9系统目录简析 在研究所有问题之前,请先了解一下系统的文件目录结构,具体如下图所示 ...
- 微信JSSDK与录音相关的坑
欢迎各位转载, 以让微信团队重视这些恼人的BUG. 请注明出处微信JSSDK与录音相关的坑 by lzl124631x 最近一直在做微信JSSDK与录音相关的功能开发, 遇到了各种奇尺大坑, 时不时冷 ...
- PHPCMS V9 学习总结(转)
转自:http://www.cnblogs.com/Braveliu/p/5074930.html 在实现PHPCMS网站过程中,根据业务需求,我们遇到很多问题,特此总结如下,以便大家参考学习. [1 ...
- phpcms图文总结(转)
转自:http://www.cnblogs.com/Braveliu/p/5074930.html 在实现PHPCMS网站过程中,根据业务需求,我们遇到很多问题,特此总结如下,以便大家参考学习. [1 ...
- 微信JSSDK与录音相关的坑
微信JSSDK与录音相关的坑 最近一直在做微信JSSDK与录音相关的功能开发, 遇到了各种奇尺大坑, 时不时冷不丁地被坑一道, 让我时常想嘶吼: "微信JSSDK就是个大腊鸡!!!!!!!! ...
- 模仿某旅行网站 纯css实现背景放大效果
基本功能是鼠标移动到图片上,对应宽度变宽.其中布局和基本样式直接copy官网,功能部分是自己瞎鼓捣实现的. 直接上代码: HTML部分 <div class="fold_wrap&qu ...
- Python-GUI编程-PyQt5
Python-GUI编程-PyQt5 1. GUI编程是什么? GUI 全称为: Graphical User Interface;简称GUI翻译为中文为: 图形化用户接口简单理解就是:- 使用Pyt ...
- #学习笔记#e2e学习使用(一)
本文仅限于记录本人学习的过程,以及怎么踩的坑,是如何解决的.逻辑肯定是混乱的,有用之处会抽出共通另行发帖. 最终目标:要运用于Vue项目中,进行功能测试甚至自动化测试. 一.e2e概念 理解:end ...
随机推荐
- django的模板(二)
模板(二) 实验简介 本节继续介绍模板的常用标签,for.if.ifequal和注释标签. 一.基本的模板标签和过滤器 1. 标签 if/else {% if %} 标签检查(evaluate)一个变 ...
- 为label或者textView添加placeHolder
Tip:使用textView的代理需要在头文件中加入: <UITextViewDelegate> h文件 @interface FeedbackViewController : UIVie ...
- 记一次jar包冲突
题记:永远不要在同一个项目中,引用不同版本的两个jar包,否则,这可能就是一个大坑. 在做网校项目的时候,帮助中心要使用lucene,所以就引入了lucene-5.5.1的包,删掉了原先存在于项目中的 ...
- 前端面试之angular JS
1. angular的数据绑定采用什么机制?详述原理 angularjs的双向数据绑定,采用脏检查(dirty-checking)机制.ng只有在指定事件触发后,才进入 $digest cycle : ...
- Raid 5数据恢复原理以及raid 5数据恢复实际操作案例
Raid 5数据恢复算法原理 要理解 raid 5数据恢复原理首先要先认识raid5,"分布式奇偶校验的独立磁盘结构"也就是我们称之为的raid 5数据恢复有一个概念需要理解,也就 ...
- 08-TypeScript中的类
类的概念通常是在后端开发中实现的思想,比如C#.C++或Java,传统的JavaScript开发通过使用原型模式来模拟类的功能.在TypeScript中,天生就是支持类 的,可以让前端的开发更加具有面 ...
- rsync 自动创建目录的坑点
rsync同步文件有三种模式: 1.把源站路径下某个文件,同步到目标路径.例如rsync -aR /data/1/2/3/a.txt 1.1.1.1:/data/ ,目标机器将自动创建多层目录存放a. ...
- TF中conv2d和kernel_initializer方法
conv2d中的padding 在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], pad ...
- sts中maven
建立一个maven web的工程 网上有很多关于maven的下载,配置等,我这里就不多说了. 下面介绍主要介绍关于在sts中建立一个maven时最开始出现的错误问题. 创建maven工程 file-& ...
- GIT入门笔记(18)- 标签创建和管理
git tag <name>用于新建一个标签,默认为HEAD,也可以指定一个commit id: git tag -a <tagname> -m "blablabla ...