剑指Offer——网易笔试之不要二——欧式距离的典型应用

前言

欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

二维空间的公式

0ρ = sqrt( (x1-x2)^2+(y1-y2)^2 ) |x| = √( x2 + y2 )

三维空间的公式

0ρ = √( (x1-x2)^2+(y1-y2)^2+(z1-z2)^2 ) |x| = √( x2 + y2 + z2 )

解题思路:欧式距离不能为2,左上角(4*4)满足,右上角中即在同一行中看a[i][j-2]是否存在蛋糕,若不存在,则放置蛋糕。左下角中若在同一列,则看a[i-2][j]是否存在蛋糕,若不存在,则放置蛋糕。对于右下角,则看a[i-2][j]、a[i][j-2]是否存在蛋糕,若不存在,则放置蛋糕。

package cn.edu.ujn.nk;

import java.util.Scanner;
import java.util.regex.Pattern;

/**
 * 2016-08-09 --01
 * 不要二
 * 二货小易有一个W*H的网格盒子,网格的行编号为0~H-1,网格的列编号为0~W-1。每个格子至多可以放一块蛋糕,任意两块蛋糕的欧几里得距离不能等于2。
 * 对于两个格子坐标(x1,y1),(x2,y2)的欧几里得距离为: ( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) )的算术平方根
 * 小易想知道最多可以放多少块蛋糕在网格盒子里。
 * 输入描述: 每组数组包含网格长宽W,H,用空格分割.(1 ≤ W、H ≤ 1000)
 *
 * 输出描述: 输出一个最多可以放的蛋糕数
 *
 * 输入例子: 3 2
 *
 * 输出例子: 4
 *
 * @author SHQ
 *
 */
public class NotTwo {

/**
 * @param args
 */
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while (in.hasNextLine()) {
String str = in.nextLine();
if (str.length() == 0) {
break;
}
Pattern pattern = Pattern.compile("[ ]+");
String[] arr = pattern.split(str);
int w = Integer.parseInt(arr[0]);
int h = Integer.parseInt(arr[1]);

System.out.println(notTwoGreed(h, w));
}

}

private static int notTwo(int h, int w) {
int cnt = 0;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
if ((i / 2 + j / 2) % 2 == 0)
cnt++;
}
}
return cnt;
}
private static int notTwoGreed(int h, int w) {
int [][] a = new int [h][w];
int cnt = 0;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
// 左上
if(i< 2 && j < 2){
a[i][j] = 1;
cnt++;
// 右上
}else if(i < 2 && j-2 >= 0 && a[i][j-2] != 1){
a[i][j] = 1;
cnt++;
// 左下
}else if(j < 2 && i - 2 >= 0 && a[i-2][j] != 1){
a[i][j] = 1;
cnt++;
// 右下
}else if(i >= 2 && j >= 2 && a[i-2][j] != 1 && a[i][j-2] != 1){
a[i][j] = 1;
cnt++;
}
}
}
return cnt;
}
}

美文美图

剑指Offer——网易笔试之不要二——欧式距离的典型应用的更多相关文章

  1. 剑指Offer——网易笔试之解救小易——曼哈顿距离的典型应用

    剑指Offer--网易笔试之解救小易--曼哈顿距离的典型应用 前言 首先介绍一下曼哈顿,曼哈顿是一个极为繁华的街区,高楼林立,街道纵横,从A地点到达B地点没有直线路径,必须绕道,而且至少要经C地点,走 ...

  2. 剑指Offer——网易笔试之解救小易

    知识要点 首先介绍一下曼哈顿,曼哈顿是一个极为繁华的街区,高楼林立,街道纵横,从A地点到达B地点没有直线路径,必须绕道,而且至少要经C地点,走AC和 CB才能到达,由于街道很规则,ACB就像一个直角3 ...

  3. 剑指Offer——网易校招内推笔试题+模拟题知识点总结

    剑指Offer--网易校招内推笔试题+模拟题知识点总结 前言 2016.8.2 19:00网易校招内推笔试开始进行.前天晚上利用大约1小时时间完成了测评(这个必须做,关切到你能否参与面试).上午利用2 ...

  4. 剑指Offer——网易笔试题+知识点总结

    剑指Offer--网易笔试题+知识点总结 Fibonacci package cn.edu.ujn.nk; import java.util.ArrayList; import java.util.S ...

  5. C++版 - 剑指offer 面试题24:二叉搜索树BST的后序遍历序列(的判断) 题解

    剑指offer 面试题24:二叉搜索树的后序遍历序列(的判断) 题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true.否则返回false.假设输入的数组的任意两个 ...

  6. 剑指Offer(一):二维数组中的查找

    一.前言 刷题平台:牛客网 二.题目 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整 ...

  7. 剑指Offer面试题:2.二维数组中的查找

    一.题目:二维数组中的查找 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...

  8. 剑指Offer面试题:9.二进制中1的个数

    一.题目:二进制中1的个数 题目:请实现一个函数,输入一个整数,输出该数二进制表示中1的个数.例如把9表示成二进制是1001,有2位是1.因此如果输入9,该函数输出2. 二.可能引起死循环的解法 一个 ...

  9. 剑指Offer面试题:22.二叉搜索树的后序遍历序列

    一.题目:二叉搜索树的后序遍历序列 题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true,否则返回false.假设输入的数组的任意两个数字都互不相同. 例如在下面 ...

随机推荐

  1. UVA 11584 划分回文字串

    将其划分为尽可能少的回文串 dp[i] = min(dp[i],dp[j] + 1)    来表示j+1~i是回文串 #include <iostream> #include <cs ...

  2. java的数据结构

    常见的数据结构 线性表(list) 1.有序列表,就像小朋友排队(一队)放学出校门,插入的顺序作为遍历的顺序,位置不变(长度固定)  2.顺序存储:从起始位置开始依次向后存储,查询方便,但是插入(排队 ...

  3. Python 编程规范

    原文传送符:请点击

  4. 一个使用 Python 的人工智能聊天机器人框架

    一个Python 的 AI Chatbot框架 建立一个聊天室可以听起来很棒,但它是完全可行的. IKY是一个内置于Python中的AI动力对话对话界面. 使用IKY,很容易创建自然语言会话场景,无需 ...

  5. Java 中 json字符串转换为类

    使用到alibaba.fastjson包 具体实现 JSONObject jsonObject = JSONObject.parseObject(msg); SmsSenderStatus smsSe ...

  6. Linux学习之CentOS(六)---mount挂载设备(u盘,光盘,iso等 )

    对于新手学习,mount 命令,一定会有很多疑问.其实我想疑问来源更多的是对linux系统本身特殊性了解问题. linux是基于文件系统,所有的设备都会对应于:/dev/下面的设备.如: [cheng ...

  7. js 当前时间刷新

    <p>每隔1秒钟,打印当前时间</p> <div id="time"></div> <script> function ...

  8. google-gson 解析json

    http://www.cnblogs.com/jianyungsun/p/6647203.html 在JSON官网我们可以查看到各个语法对json的支持,对于java来说比较成熟的是google-gs ...

  9. angularJS入门笔记

    1.debug调试工具:batarang2.ng指令 1.ng-app=" " 定义angularJS的使用范围:----main方法,入口 ng-app="myModu ...

  10. JS运行机制之 Event Loop 的思考

    先举个栗子,如下: for (var i = 0; i < 5; i++) { setTimeout(function() { console.log('i: ',i); //一秒之后输出几乎没 ...