#219. 【NOI2016】优秀的拆分

题意:求有多少AABB样子的子串,拆分不同的同一个子串算多个


一开始一直想直接求,并不方便

然后看了一眼Claris的题解的第一行就有思路了

如果分开,求\(f[i]\)以i结尾AA形式子串和\(g[i]\)以i开始AA形式子串 就可以套路了

使用常用技巧,枚举\(L=|A|\),AA子串一定覆盖了两个关键点,枚举更新就行了,对于区间加可以使用差分

其实这道题很好拿95分啊,\(O(n^2)\)用哈希判断就行了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=3e4+5;
typedef long long ll;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, Log[N]; char s[N];
namespace ST {
void build(int f[N][16], int *a) {
for(int i=1; i<=n; i++) f[i][0]=a[i];
for(int j=1; j<15; j++)
for(int i=1; i+(1<<j)-1<=n; i++)
f[i][j] = min(f[i][j-1], f[i+(1<<(j-1))][j-1]);
}
}
struct SA {
int sa[N], t1[N], t2[N], c[N], rnk[N], hei[N], f[N][16];
inline bool cmp(int *r, int a, int b, int j) {
return a+j<=n && b+j<=n && r[a]==r[b] && r[a+j]==r[b+j];
}
void build(char *s, int m) {
int *r=t1, *k=t2;
for(int i=0; i<=m; i++) c[i]=0;
for(int i=1; i<=n; i++) c[r[i]=s[i]]++;
for(int i=1; i<=m; i++) c[i] += c[i-1];
for(int i=n; i>=1; i--) sa[ c[r[i]]-- ]=i; for(int j=1; j<=n; j<<=1) {
int p=0;
for(int i=n-j+1; i<=n; i++) k[++p]=i;
for(int i=1; i<=n; i++) if(sa[i]>j) k[++p]=sa[i]-j; for(int i=0; i<=m; i++) c[i]=0;
for(int i=1; i<=n; i++) c[r[k[i]]]++;
for(int i=1; i<=m; i++) c[i] += c[i-1];
for(int i=n; i>=1; i--) sa[ c[r[k[i]]]-- ]=k[i]; swap(r, k); p=0; r[sa[1]]=++p;
for(int i=2; i<=n; i++) r[sa[i]] = cmp(k, sa[i], sa[i-1], j) ? p : ++p;
if(p>=n) break; m=p;
} int now=0;
for(int i=1; i<=n; i++) rnk[sa[i]]=i;
for(int i=1; i<=n; i++) {
if(now) now--;
if(rnk[i]==1) continue;
int j=sa[rnk[i]-1];
while(i+now<=n && j+now<=n && s[i+now]==s[j+now]) now++;
hei[rnk[i]]=now;
} ST::build(f, hei);
}
int lcp(int x, int y) {
x=rnk[x], y=rnk[y];
if(x>y) swap(x, y); x++;
int t=Log[y-x+1];
return min(f[x][t], f[y-(1<<t)+1][t]);
}
}a, b;
inline int lcp(int x, int y) {return a.lcp(x, y);}
inline int lcs(int x, int y) {return b.lcp(n-x+1, n-y+1);}
int f[N], g[N];
inline void add(int *d, int l, int r) {d[l]++; d[r+1]--;}
void solve(int L) { //printf("\nsolve %d\n",L);
for(int i=1; i+L<=n; i+=L) {
int l = i - lcs(i, i+L) + 1, r = i + L + lcp(i, i+L) - 1;
l = max(l, i-L+1); r = min(r, i+L+L-1);
l = max(l, 1); r = min(r, n);
//printf("key %d %d [%d, %d]\n", i, i+L, l, r);
if(r-l+1 < 2*L) continue; add(f, l+2*L-1, r); add(g, l, r-2*L+1);
}
}
int main() {
freopen("in","r",stdin);
Log[1]=0; for(int i=2; i<N; i++) Log[i] = Log[i>>1]+1;
int T=read();
while(T--) {
scanf("%s", s+1); n=strlen(s+1);
a.build(s, 260); reverse(s+1, s+1+n); b.build(s, 260); reverse(s+1, s+1+n); for(int i=1; i<=n; i++) f[i]=g[i]=0;
//for(int i=1; i<=n; i++) for(int j=i; j<=n; j++) printf("lcs %d %d %d\n",i,j,lcs(i,j));
for(int i=1; i<=n; i++) solve(i);
ll ans=0;
for(int i=1; i<=n; i++) f[i]+=f[i-1], g[i]+=g[i-1];// printf("look %d %d %d\n",i,f[i],g[i]);
for(int i=2; i<n; i++) ans += (ll)f[i]*g[i+1];
printf("%lld\n", ans);
}
}

UOJ#219. 【NOI2016】优秀的拆分 [后缀数组 ST表]的更多相关文章

  1. UOJ#219/BZOJ4650 [NOI2016]优秀的拆分 字符串 SA ST表

    原文链接http://www.cnblogs.com/zhouzhendong/p/9025092.html 题目传送门 - UOJ#219 (推荐,题面清晰) 题目传送门 - BZOJ4650 题意 ...

  2. [NOI2016]优秀的拆分 后缀数组

    题面:洛谷 题解: 因为对于原串的每个长度不一定等于len的拆分而言,如果合法,它将只会被对应的子串统计贡献. 所以子串这个限制相当于是没有的. 所以我们只需要对于每个位置i求出f[i]表示以i为开头 ...

  3. UOJ #219 BZOJ 4650 luogu P1117 [NOI2016]优秀的拆分 (后缀数组、ST表)

    连NOI Day1T1都不会做...看了题解都写不出来还要抄Claris的代码.. 题目链接: (luogu)https://www.luogu.org/problemnew/show/P1117 ( ...

  4. BZOJ.4650.[NOI2016]优秀的拆分(后缀数组 思路)

    BZOJ 洛谷 令\(st[i]\)表示以\(i\)为开头有多少个\(AA\)这样的子串,\(ed[i]\)表示以\(i\)结尾有多少个\(AA\)这样的子串.那么\(Ans=\sum_{i=1}^{ ...

  5. BZOJ 4650 [Noi2016]优秀的拆分 ——后缀数组

    我们只需要统计在某一个点开始的形如$AA$字符串个数,和结束的个数相乘求和. 首先枚举循环节的长度L.即$\mid (A) \mid=L$ 然后肯定会经过s[i]和[i+L]至少两个点. 然后我们可以 ...

  6. SPOJ 687 Repeats(后缀数组+ST表)

    [题目链接] http://www.spoj.com/problems/REPEATS/en/ [题目大意] 求重复次数最多的连续重复子串的长度. [题解] 考虑错位匹配,设重复部分长度为l,记s[i ...

  7. POJ 3693 Maximum repetition substring(后缀数组+ST表)

    [题目链接] poj.org/problem?id=3693 [题目大意] 求一个串重复次数最多的连续重复子串并输出,要求字典序最小. [题解] 考虑错位匹配,设重复部分长度为l,记s[i]和s[i+ ...

  8. BZOJ_4516_[Sdoi2016]生成魔咒_后缀数组+ST表+splay

    BZOJ_4516_[Sdoi2016]生成魔咒_后缀数组+ST表+splay Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔 ...

  9. UVA10829 L-Gap Substrings(后缀数组+ST表)

    后缀数组+ST表. 代填的坑. \(Code\ Below:\) #include <bits/stdc++.h> #define ll long long using namespace ...

随机推荐

  1. 2017ccpc哈尔滨区域赛H

    n堆石子 每次只能拿一个石子从一堆移到另一堆  知道所有的堆的石子数目都能整除x(x>1) 问最小移动次数 枚举x的可能取值  即a[i]和的素因子即可  合因子的区间变化会比较大   然后求余 ...

  2. UVA 1584 字符串

    VJ 该题 链接  https://vjudge.net/problem/UVA-1584 AC代码   字典序最小输出 #include <stdio.h> #include <m ...

  3. JSON对象添加删除属性

    假如目前我们有如下一个Json对象 var jsonObj={ 'param1':22, 'param2' :33 }; 增加属性: 我们现在向该对象jsonObj中添加一个新的属性字段:param3 ...

  4. JPQL

    JPQL语言 JPQL语言,即 Java Persistence Query Language 的简称. JPQL是一种和 SQL 非常类似的中间性和对象化查询语言, 它最终会被编译成针对不同底层数据 ...

  5. [数据分析工具] Pandas 功能介绍(一)

    如果你在使用 Pandas(Python Data Analysis Library) 的话,下面介绍的对你一定会有帮助的. 首先我们先介绍一些简单的概念 DataFrame:行列数据,类似 Exce ...

  6. Google PageSpeed Tools 性能测试分析

    今天给大家介绍下一个工具:Google PageSpeed Tools,根据官方的介绍,简单梳理如下: Page Speed Insights能针对移动设备和电脑设备衡量网页的性能.该工具会抓取网址两 ...

  7. App Doc View Frame中指针的获取

    // App中获取其它三项指针 void CSDIApp::OnApp() { // App // Doc CDocument *pDoc = ((CFrameWndEx *)m_pMainWnd)- ...

  8. 基础二 day4

    昨日回顾int bit_lenth()bool int ----> bool 非零True,0 False bool----> True 1 False 0 str ----> bo ...

  9. Laravel5.5 的 Homestead 开发环境部署

    首先明白以下几个概念 VirtualBox  -- Oracle 公司的虚拟机软件, 能运行在当前大部分流行的系统上; Vagrant 提供一种命令行接口, 允许自动化安装虚拟机, 并且因为是脚本编写 ...

  10. 一步步部署基于Windows系统的Jenkins持续集成环境

    如题:本文将介绍如何在Windows环境下运用Jenkins部署持续集成环境.之所以写本文,是因为在最近工作当中,学习使用Jenkins时,确实遇到了一些问题,而大多数教程文档都是基于Mac或是Lin ...