题解:

  首先用二进制表示每个音阶是否使用,那么共有$2^{n}-1$(空集不可行)种片段,用$a_{i}$来表示每个片段,问题就是求满足$a_{1}\left (xor\right)a_{2}\left (xor\right)......\left (xor\right)a_{m}==0\&\&a_{i}!=a_{j},1<=i<j<=m$的方案数,我们用$f_{i}$表示片段数为i时,且满足前面式子的答案。

  那么首先我们在选取i个片段时,必然是由前i-1个片段决定的,所以共有$A_{2^{n}-1}^{i-1}$种选取方案。其中若i-1个时已满足其异或和为0,那么此时是不合法的,所以需要减去$f_{i-1}$,考虑出现重复的情况,因为出现了重复,又有异或的逆运算就是本身,这也就意味着除去两个重复的片段的i-2个片段已经满足其异或和为0,而这个重复的片段在i-1个片段中的位置有i-1种,而这个重复的片段的值又可以在除去i-2个片段的集合中任意选取。

  所以得到递推式:

  $$f_{i}=A_{2^{n}-1}^{i-1}-f_{i-1}-f_{i-2}*(2^{n}-1-i+2)*(i-1)$$

  又由于不允许有重复,在最后除去$m!$即可。

 

 #include<cstdio>
typedef long long ll;
const ll mod=;
const int N=;
ll n,m;
ll powmod(ll a,ll b){
ll ans=;
a%=mod;
for(;b;b>>=,a=a*a%mod)
if(b&) ans=ans*a%mod;
return ans;
}
ll tot;
ll jie;
ll fac[N];
inline void init(){
fac[]=;
for(ll i=;i<=m;i++)
fac[i]=fac[i-]*(tot-i+)%mod;
} ll f[N];
int main(){
scanf("%lld%lld",&n,&m);
tot=powmod(2LL,n);
tot--;
if(tot<) tot+=mod;
init();
for(ll i=;i<=m;i++){
f[i]=(fac[i-]-f[i-])%mod-f[i-]*(i-)%mod*(tot-i+)%mod;
f[i]%=mod;
}
ll tt=;
for(ll i=;i<=m;++i)
tt=tt*i%mod;
tt=powmod(tt,mod-);
printf("%lld\n",(f[m]*tt%mod+mod)%mod);
}

【BZOJ2339】【HNOI2011】卡农的更多相关文章

  1. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

  2. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  3. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  4. BZOJ2339 HNOI2011卡农(动态规划+组合数学)

    考虑有序选择各子集,最后除以m!即可.设f[i]为选i个子集的合法方案数. 对f[i]考虑容斥,先只满足所有元素出现次数为偶数.确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1 ...

  5. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  6. 【BZOJ2339】卡农(递推,容斥)

    [BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表 ...

  7. P3214 [HNOI2011]卡农

    题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...

  8. [HNOI2011]卡农

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  9. [HNOI2011]卡农 题解

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  10. [HNOI2011]卡农 (数论计数,DP)

    题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...

随机推荐

  1. JAVA物联网九大核心热点技术

    1. Unix/Linux平台技术: Unix系统原理.Unix常用命令.Shell编程.  2. Java EE核心技术: Java语言核心.Java高级API.JVM及性能优化.Java Secu ...

  2. Oracle的网络监听配置

    listener.ora.tnsnames.ora和sqlnet.ora这3个文件是关系oracle网络配置的3个主要文件,都是放在$ORACLE_HOME\network\admin目录下.其中li ...

  3. Day10 多线程理论 开启线程

    多线程: 多线程和多进程的不同是他们占用的资源不一样, 一个进程里边可以包含一个或多个进程, 进程的开销大,线程的开销小. 打个比方来说:创建一个进程,就是创建一个车间.创建一个线程,就是在一个车间创 ...

  4. mysql cluster部署

    一.mysql cluster的基本概念 1.mysql cluster的组成            管理(MGM)节点:这类节点的作用是管理MySQL Cluster内的其他节点,如提供配置数据.启 ...

  5. Java 中遇到null 和为空的情况,使用Optional来解决。

    Java 中遇到null 和为空的情况,使用Optional来解决 示例代码: package crazy; import java.util.Optional; class Company { pr ...

  6. Android 路由框架ARouter最佳实践

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/76165252 本文出自[赵彦军的博客] 一:什么是路由? 说简单点就是映射页面跳转 ...

  7. 如何避免 await/async 地狱

    原文地址:How to escape async/await hell 译文出自:夜色镇歌的个人博客 async/await 把我们从回调地狱中解救了出来,但是如果滥用就会掉进 async/await ...

  8. 构建具有用户身份认证的 Ionic 应用

    序言:本文主要介绍了使用 Ionic 和 Cordova 开发混合应用时如何添加用户身份认证.教程简易,对于 Ionic 入门学习有一定帮助.因为文章是去年发表,所以教程内关于 Okta 的一些使用步 ...

  9. Python学习 Part3:数据结构

    Python学习 Part3:数据结构 1. 深入列表: 所有的列表对象方法 list.append(x): 在列表的末尾添加一个元素 list.extend(L): 在列表的末尾添加一个指定列表的所 ...

  10. jq slideToggle()坑

    jQuery slideToggle() 方法 jQuery slideToggle() 方法可以在 slideDown() 与 slideUp() 方法之间进行切换. 如果元素向下滑动,则 slid ...