附录D——自动微分(Autodiff)
本文介绍了五种微分方式,最后两种才是自动微分。
前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数。
假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$,以便应用于梯度下降等算法。
1、手工求导
该方法比较简单,就是自备纸笔,应用基本的求导规则,以及链式求导法则,人工求导。缺点是对于复杂函数容易出错。幸运的是,这一计算过程可由计算机帮我们完成,这就是符号微分。
2、符号微分(Symbolic Differentiation)
如图D-1所示,使用符号微分的方法,计算函数$g(x,y) = 5 + xy$的偏导数。该图左侧代表函数$g(x,y)$,右侧代表$g(x,y)$关于$x$的偏导数$\frac{\partial g}{\partial x} = 0 + (0 \times x + y \times 1) = y$(同样的,可以求得$\frac{\partial g}{\partial y}$)。
图D-1 符号微分
该算法首先求叶子节点关于$x$的偏导数,然后沿着树向上,求得其他节点关于自变量的偏导数。这与手工求导所使用的规则是一样的。
如果函数复杂,该算法生成的树将十分庞大,性能不高。而且无法对很随意的代码求导,例如:
def my_func(a, b):
z = 0
for i in range(100):
z = a * np.cos(z + i) + z * np.sin(b - i)
return z
3、数值微分(Numerical Differentiation)
这是根据导数的定义来求解的。函数$h(x)$在$x_0$点的导数为:
$h'(x) = \lim_{\varepsilon \rightarrow 0} \frac{h(x_0 + \varepsilon) - h(x_0)}{\varepsilon}$
我们取一个很小的$\varepsilon$,带入公式进行计算即可。该方法所得结果不够精确,参数过多时计算量也比较大。但是计算起来很简单,可用于校验手工算出的导数是否正确。
如果有1000个参数,至少需要调用$h(x)$1001词,来求得所有偏导数。
4、前向自动微分(Forward-Mode Autodiff)
该算法依赖一个虚数(dual numbers,这让我想起来oracle的虚表。难度dual可以表示虚无的意思?) $\varepsilon$,满足$\varepsilon^2 = 0$但是$\varepsilon \neq 0$(姑且理解为一阶无穷小吧)。
由于$\varepsilon$是无穷小,因此满足$h(a + b \varepsilon) = h(a) + b \times h'(a)\varepsilon$。因此,算出$h(a + \varepsilon) $可以同时得到$h(a)$和$h'(a)$,如图D-2所示。
图D-2 前向自动微分
上图值计算了$\frac{\partial f}{\partial x}(3,4)$,同样的方法可以算的$\frac{\partial f}{\partial y}(3,4)$。
如果有1000个参数,需要遍历上图1000次,来求得所有偏导数。
5、反向自动微分(Reverse-Mode Autodiff)
这是TensorFlow所采用的自动微分算法。如图D-3所示,该算法首先前向(也就是从输入到输出)计算每个节点的值,然后反向(从输出到输入)计算所有的偏导数。
图D-3 反向自动微分
反向计算时应用链式求导法则:
$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial n_i} \times \frac{\partial n_i}{\partial x}$
由于$n_7$就是输出节点,$f = n_7$,因此$\frac{\partial f}{\partial n_7} = 1$。
该算法强大且精确,尤其是输入很多,输出很少时。假如函数有10个输出(不管输入是1千,2万还是更多),求得所有偏导数需要对上图遍历11次。
各个算法比较:
附录D——自动微分(Autodiff)的更多相关文章
- (转)自动微分(Automatic Differentiation)简介——tensorflow核心原理
现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SG ...
- pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...
- 自动微分(AD)学习笔记
1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...
- <转>如何用C++实现自动微分
作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代 ...
- PyTorch自动微分基本原理
序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...
- 【tensorflow2.0】自动微分机制
神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情. 而深度学习框架可以帮助我们自动地完成这种求梯度运算. Tensorflow一般使用梯度磁带tf.Gradi ...
- PyTorch 自动微分示例
PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分 ...
- PyTorch 自动微分
PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...
- MindSpore:自动微分
MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框 ...
随机推荐
- 设置布局默认为LinearLayout,却成了RelativeLayout
GoogleXML布局文件前推荐布局LinearLayout新建布局XML文件根元素LinearLayout, 随着android发展工程师更推荐使用RelativeLayout布局式所新建XML布局 ...
- C语言笔试经典--求分数数列的和
题目: 求数组的和 2 3/2 5/3 8/5 13/8 21/13 ... 求前20项的和 //求分数数列的和 #include<stdio.h> // ...
- Glog 和 Log4cxx 的对比
转自:http://monkeycn.iteye.com/blog/1021703 #1 Log4cxx有比较完整的配置文档方式,xml和java配置档:GLog只能通过启动程序的时候的输入参数来配置 ...
- HBase中缓存的优先级
ava代码 // Instantiate priority buckets BlockBucket bucketSingle = new BlockBucket(bytesToFree, bloc ...
- SharePoint 2013 新建网站集图解(绝对菜鸟篇)
前言:接触SharePoint的人可能是越来越多,但是很多人一接触就很迷茫,在技术群里问如何新建网站集,这样一篇图解,帮助新手学习在搭建好SharePoint环境之后,如何创建一个网站集,做一个基本的 ...
- JVM学习--(一)基本原理
前言 JVM一直是java知识里面进阶阶段的重要部分,如果希望在java领域研究的更深入,则JVM则是如论如何也避开不了的话题,本系列试图通过简洁易读的方式,讲解JVM必要的知识点. 运行流程 我们都 ...
- solr研磨之facet
作者:战斗民族就是干 转载请注明地址:http://www.cnblogs.com/prayers/p/8822417.html Facet 开门见山,facet解决的就是筛选,我是把它理解为一种聚合 ...
- mini-tabs多个div并列,并可隐藏某个div
<div class="mini-tabs" activeIndex="0" id="tabs"> <div title= ...
- iframe局部刷新的二种实现方法
需求描述: 当页面有一部分是不变的或整个页面的图片很多时,可以考虑使用局部刷新,以提高整体的下载速度与用户体验. 1,iframe实现局部刷新的方法一 复制代码代码示例: <script t ...
- PhpStudy如何开启Apache的gzip压缩功能?
要让apache支持gzip功能,要用到deflate_Module和headers_Module. 打开apache的配置文件httpd.conf,大约在105行左右,找到以下两行内容:(这两行不是 ...