题目

有 \(n\) 个圆$c_1,c_2, \cdots , c_n $,执行如下的操作:

找到剩下的半径最大的圆删除并删除所有和它有交的其他并没有被删除的圆;

求每个圆是被那个圆删除的;

$1 \le n \le 3 \times 10^5 $ ;

描述

  • kdt做法:

    记录每个圆围成的举行作为剪枝,直接模拟删除;

    记得旋转一下,然后eps开1e-3就好;

  • 搬运一下$n \ log^2n $做法(orz yww):

    考虑找到和\(c_i\) 相交的半径最大的被自己删除的圆 ;

    这样的圆一定满足互相不相交;

    由于半径比 \(c_i\) 大,所以如果相交一定会和 \(c_i\) 平行坐标轴的四条切线有交;

    所以用扫描线+cdq分治即可;

    //懒得写正解了这是暴力:
    #include<bits/stdc++.h>
    #define eps 1e-3
    #define ld double
    using namespace std;
    const int N=300010;
    const ld sq2=sqrt(2);
    int n,WD,pos[N],bl[N],ls[N],rs[N],tr[N],rt;///
    struct P{ld x,y;};///
    ld mn[N][2],mx[N][2];///
    struct C{P o;ld r,mn[2],mx[2];int id;}c[N];///
    int dcmp(ld x){return fabs(x)<eps?0:x<0?-1:1;}///
    bool cmp(C A,C B){return !dcmp(A.r-B.r)?A.id<B.id:A.r>B.r;}///
    bool cmpD(int A,int B){return !WD?c[A].o.x<c[B].o.x:c[A].o.y<c[B].o.y;}///
    ld len(P A,P B){return (A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y);}///
    bool judge(C A,C B){return dcmp(len(A.o,B.o)-(A.r+B.r)*(A.r+B.r))<=0;}///
    void rotate(P&A){A=(P){(A.x-A.y)/sq2,(A.x+A.y)/sq2};}///
    char gc(){
    static char*p1,*p2,s[1000000];
    if(p1==p2)p2=(p1=s)+fread(s,1,1000000,stdin);
    return(p1==p2)?EOF:*p1++;
    }///
    int rd(){
    int x=0,f=1;char C=gc();
    while(C<'0'||C>'9'){if(C=='-')f=-1;C=gc();}
    while(C>='0'&&C<='9'){x=x*10+C-'0';C=gc();}
    return x*f;
    }///
    void build(int&k,int l,int r,int d){
    WD=d;k=(l+r)>>1;
    nth_element(tr+l,tr+k,tr+r+1,cmpD);
    mn[k][0]=c[tr[k]].mn[0];
    mx[k][0]=c[tr[k]].mx[0];
    mn[k][1]=c[tr[k]].mn[1];
    mx[k][1]=c[tr[k]].mx[1];
    if(l<k){
    build(ls[k],l,k-1,d^1);
    for(int i=0;i<2;++i){
    mn[k][i]=min(mn[k][i],mn[ls[k]][i]);
    mx[k][i]=max(mx[k][i],mx[ls[k]][i]);
    }
    }
    if(k<r){
    build(rs[k],k+1,r,d^1);
    for(int i=0;i<2;++i){
    mn[k][i]=min(mn[k][i],mn[rs[k]][i]);
    mx[k][i]=max(mx[k][i],mx[rs[k]][i]);
    }
    }
    }///
    bool jud(int x,int y){return !x||mx[x][0]<c[y].mn[0]-eps||mn[x][0]>c[y].mx[0]+eps||mx[x][1]<c[y].mn[1]-eps||mn[x][1]>c[y].mx[1]+eps;}///
    void query(int k,int x){
    if(!bl[tr[k]]&&judge(c[tr[k]],c[x]))bl[tr[k]]=c[x].id;
    if(!jud(ls[k],x))query(ls[k],x);
    if(!jud(rs[k],x))query(rs[k],x);
    }///
    int main(){
    // freopen("B.in","r",stdin);
    // freopen("B.out","w",stdout);
    n=rd();
    for(int i=1;i<=n;++i){
    c[i].o.x=rd();c[i].o.y=rd();
    rotate(c[i].o);c[i].r=rd();
    c[i].mn[0]=c[i].o.x-c[i].r;
    c[i].mx[0]=c[i].o.x+c[i].r;
    c[i].mn[1]=c[i].o.y-c[i].r;
    c[i].mx[1]=c[i].o.y+c[i].r;
    c[i].id=tr[i]=i;
    }///
    sort(c+1,c+n+1,cmp);
    for(int i=1;i<=n;++i)pos[c[i].id]=i;
    build(rt,1,n,0);
    for(int i=1;i<=n;++i){
    if(!bl[i])query(rt,i);
    }
    for(int i=1;i<=n;++i)printf("%d ",bl[pos[i]]);
    return 0;//
    }//

【loj2586】【APIO2018】选圆圈的更多相关文章

  1. LOJ2586 APIO2018 选圆圈

    考前挣扎 KD树好题! 暴力模拟 通过kd树的结构把子树内的圈圈框起来 然后排个序根据圆心距 <= R1+R2来判断是否有交点 然后随便转个角度就可以保持优越的nlgn啦 卡精度差评 必须写ep ...

  2. 「APIO2018选圆圈」

    「APIO2018选圆圈」 题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1, c_2, \ldots, c_n\) .我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径 ...

  3. BZOJ5465 APIO2018选圆圈(KD-Tree+堆)

    考虑乱搞,用矩形框圆放KD-Tree上,如果当前删除的圆和矩形有交就递归下去删.为防止被卡,将坐标系旋转一定角度即可.注意eps稍微设大一点,最好开上long double. #include< ...

  4. [BZOJ5465][APIO2018]选圆圈(KD-Tree)

    题意:给你n个圆,每次选择半径最大的,将它和与它相交的圆全部删去,输出每个圆是在哪次被删的. KD树模板题.用一个矩形框住这个圆,就可以直接剪枝了.为了防止被卡可以将点旋转一个角度,为了保险还可以多转 ...

  5. 【LG4631】[APIO2018]Circle selection 选圆圈

    [LG4631][APIO2018]Circle selection 选圆圈 题面 洛谷 题解 用\(kdt\)乱搞剪枝. 维护每个圆在\(x.y\)轴的坐标范围 相当于维护一个矩形的坐标范围为\([ ...

  6. 【APIO2018】选圆圈(平面分块 | CDQ分治 | KDT)

    Description 给定平面上的 \(n\) 个圆,用三个参数 \((x, y, R)\) 表示圆心坐标和半径. 每次选取最大的一个尚未被删除的圆删除,并同时删除所有与其相切或相交的圆. 最后输出 ...

  7. 【LOJ2586】【APIO2018】选圆圈 CDQ分治 扫描线 平衡树

    题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1,c_2,\ldots,c_n\) .我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径最大的圆,选择编号最小的.记为 \ ...

  8. [loj2586]选圆圈

    下面先给出比较简单的KD树的做法-- 根据圆心建一棵KD树,然后模拟题目的过程,考虑搜索一个圆 剪枝:如果当前圆[与包含该子树内所有圆的最小矩形]都不相交就退出 然而这样的理论复杂度是$o(n^2)$ ...

  9. LOJ 2586 「APIO2018」选圆圈——KD树

    题目:https://loj.ac/problem/2586 只会 19 分的暴力. y 都相等,仍然按直径从大到小做.如果当前圆没有被删除,那么用线段树把 [ x-r , x+r ] 都打上它的标记 ...

随机推荐

  1. IIS6/IIS7环境下实现支持mp4视频随意拖动、预览播放、边下载边播放

    前几天,一客户需要在IIS环境下实现MP4视频可以随意拖动观看,边下载边播放.一看这要求,IIS本身是无法实现,想着应该需要用插件,于是GG一番,还真找到这样的插件,此组件为H264-Streamin ...

  2. React Native移动开发实战-2-如何调试React Native项目

    在实际开发中,还有一个影响开发效率的重要因素:调试. 在1.4.3节中已经介绍了Enable Live Debugger的使用.本节来介绍另一个非常重要的调试选项:Debug JSRemotely选项 ...

  3. webbrowser 模块的 open()方法

    webbrowser 模块的 open()函数可以启动一个新浏览器,打开指定的 URL.在交 互式环境中输入以下代码: >>> import webbrowser >>& ...

  4. 利用Elasticsearch搭建全球域名解析记录

    前言 数据来源,由Rapid7收集并提供下载https://scans.io/study/sonar.fdns 下载Elasticsearch 2.3 ElasticSearch是一个基于Lucene ...

  5. python实现将json数据以json格式写入txt文件

    json.dumps中indent参数是设置json缩进量的 举例: tmp = { "aaa" : "111", "bbb" : '222 ...

  6. 为什么每次进入命令都要重新source /etc/profile 才能生效?

    https://segmentfault.com/q/1010000005981201

  7. 团队博客作业Week1 --- 团队成员简介

    团队博客作业Week1 团队作业1 我们团队是一个以功能团队模式组建而成的团队,我们总共有5位队员,分别是:李剑锋.陈谋.卢惠明.潘成鼎.仉伯龙. 中间的那位就是李剑锋,我们的PM(项目经理).性格热 ...

  8. [buaa-SE-2017]个人作业-Week1

    个人作业-Week1 Part1:教材中不懂的问题 1.根据书中"除了前20的学校之外,计科和软工没有区别"所以计算机科学这个专业也许在我们学校是和软件工程有区别的,但是可以料想的 ...

  9. VS2010中配置OpenGL

    下面将对VS2010中配置OpenGL进行简单介绍. 学习OpenGL前的准备工作第一步,选择一个编译环境现在Windows系统的主流编译环境有Visual Studio,Broland C++ Bu ...

  10. HDU 3853 LOOPS 期望dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Time Limit: 15000/5000 MS (Java/Others)Me ...