1825: [JSOI2010]蔬菜庆典

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 112  Solved: 45
[Submit][Status][Discuss]

Description

Input

Output

对于每组数据,输出一行。若蔬菜的总价能无限制增大,输出"+inf"(不含引号)。否则输出一个整数,表示所有蔬菜的最大总价。

Sample Input

5
-1 3
1 2
1 1
3 2
3 2
5
-1 3
1 2
1 1
3 2
3 3
0

Sample Output

13
+inf

HINT

简化版题意:

给出一棵有根树,每个点有一个权值v,可以对一个有父亲并且又有儿子的节点选择一个儿子进行一次操作使$v[x]=v[fa[x]]+v[son[x]]-v[x]$。

问无限制使用这种操作后树上的权值和最大为多少。

参照样例,显然当某一时刻一个非根节点有两个不同权值的儿子时答案就是正无穷。

假设这个点的权值为A,父亲为B,权值小的孩子为C,大的为D。

第一次 A'=(B+C-A)  第二次 A''=B+D-A'=B+D-B-C+A=A+D-C>A

然后考虑怎么构造出这种情况。

因为根节点是不会变的,所以对于1的每一个儿子可以分开处理,设为函数solve(x)。

如果某个点有两个儿子不同那么就不需要构造直接返回inf。

如果每个点的$v[fa[x]]+v[son[x]]$都等于$2v[x]$显然这棵树的权值是固定的,返回整棵树的权值。

那么现在存在一个点$v[fa[x]]+v[son[x]]!=2[v[x]]$,这个点的权值可以变化,那么说明这棵树的非叶节点的权值都可以变化(递归考虑,一个点的权值要么本身就能变化,那么它父亲或儿子变化后它可以变化),此时如果答案不为inf,这棵树只能是一条链,或者链上的最后一个点可以有多个叶儿子。

两种情况没有区别,考虑一条链怎么做。

不妨让它长这样:

....A B C.....

对B操作,我们从两个视角看:

A:  B'=A+(C-B)

C:  B'=C-(B-A)

B'-A=(C-B)

C-B'=(B-A)

其实就是差分序列的相邻两项交换了位置。

然后做法就很明了了。。。

为了让和尽量大,我们把差分序列排个序就好啦>_<

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 200005
#define int long long
#define inf 0x3f3f3f3f
using namespace std;
int head[N],ver[N],nxt[N],tot;
int son[N];
void add(int a,int b)
{
tot++;nxt[tot]=head[a];head[a]=tot;ver[tot]=b;return ;
}
int n;
int p[N],v[N];
bool flag,lian,flag2,flag3;
int sum[N],ss;
void dfs(int x)
{
int pre=inf;
if(!head[x])ss+=v[x];
if(p[x]!=1&&son[x]!=0&&son[p[x]]>=2)flag3=1;
for(int i=head[x];i;i=nxt[i])
{
if(son[x]>1)lian=1;
if(pre!=inf&&v[ver[i]]!=pre)flag=1;
if(v[p[x]]+v[ver[i]]!=2*v[x])flag2=1;
pre=v[ver[i]];
dfs(ver[i]);
sum[x]+=sum[ver[i]];
}
sum[x]+=v[x];
return ;
}
int st[N],top;
bool cmp(int x,int y)
{
return x>y;
}
int solve(int x)
{
flag=0;lian=0;flag2=0;flag3=0;ss=0;
dfs(x);
if(flag||(lian&&flag2&&flag3))return 0;
if(lian&&flag3)return sum[x];
top=0;
for(int i=x;;i=ver[head[i]])
{
st[++top]=v[i]-v[p[i]];
if(!head[i])break;
}
sort(st+1,st+top+1,cmp);
int now=v[1];
int sm=0;
for(int i=1;i<top;i++)
{
now+=st[i];
sm+=now;
}
return sm+ss;
}
signed main()
{
while(~scanf("%lld",&n))
{
if(n==0)break;
for(int i=1;i<=n;i++)
{
scanf("%lld%lld",&p[i],&v[i]);
if(p[i]!=-1)add(p[i],i),son[p[i]]++;
}
int ans=0,ts=0;
for(int i=head[1];i;i=nxt[i])
{
int tmp=solve(ver[i]);
if(flag||(lian&&flag2&&flag3))ts=1;
ans+=tmp;
}
if(ts)puts("+inf");
else printf("%lld\n",ans+v[1]);
tot=0;
for(int i=1;i<=n;i++)head[i]=sum[i]=p[i]=v[i]=son[i]=0;
}
return 0;
}

  

bzoj 1825: [JSOI2010]蔬菜庆典的更多相关文章

  1. bzoj1825: [JSOI2010]蔬菜庆典

    Description Input Output 对于每组数据,输出一行.若蔬菜的总价能无限制增大,输出"+inf"(不含引号).否则输出一个整数,表示所有蔬菜的最大总价.   首 ...

  2. BZOJ 2208: [Jsoi2010]连通数 tarjan bitset

    2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  3. BZOJ 2208: [Jsoi2010]连通数( DFS )

    n只有2000,直接DFS就可以过了... -------------------------------------------------------------------------- #in ...

  4. BZOJ 1820: [JSOI2010]Express Service 快递服务( dp )

    dp(i,j,k)表示在处理第i个业务, 另外2个在j,k处. 第一维可以滚动... --------------------------------------------------------- ...

  5. BZOJ 1823: [JSOI2010]满汉全席( 2-sat )

    2-sat...假如一个评委喜好的2样中..其中一样没做, 那另一样就一定要做, 这样去建图..然后跑tarjan. 时间复杂度O((n+m)*K) ------------------------- ...

  6. bzoj 2208 [Jsoi2010]连通数

    2208: [Jsoi2010]连通数 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 输入数据第一行是图顶点的数量,一个正整数N ...

  7. 【刷题】BZOJ 4946 [Noi2017]蔬菜

    Description http://www.lydsy.com/JudgeOnline/upload/Noi2017D2.pdf Solution 网上大部分都是并查集写法,但是有大神写了非并查集写 ...

  8. BZOJ.4946.[NOI2017]蔬菜(贪心 离线)

    题目链接 因为有删除,考虑倒序处理某个p的询问. 那么每天删除xi的蔬菜就变成了每天运来xi的蔬菜.那么我们取当前最优的即可,早取晚取都一样,不需要留给后面取,还能给后面更优的留出空间. 这样就只需考 ...

  9. bzoj 1823: [JSOI2010]满汉全席 && bzoj 2199 : [Usaco2011 Jan]奶牛议会 2-sat

    noip之前学的内容了,看到题竟然忘了怎么建图了,复习一下. 2-sat 大概是对于每个元素,它有0和1两种选择,必须选一个但不能同时选.这之间又有一些二元关系,比如x&y=1等等... 先把 ...

随机推荐

  1. kubeadm源码修改证书时间 -1.13

    编译后~ 链接:https://pan.baidu.com/s/1ofLX1Sv0ZF2yjkJdqf-6rw 提取码:cnbd 已统一与CA证书都是10年 已测试 适用于k8s 1.10 至 1.1 ...

  2. mongodb基本使用(四)

    MongoDB 条件操作符 描述 条件操作符用于比较两个表达式并从mongoDB集合中获取数据. MongoDB中条件操作符有: (>) 大于 - $gt (<) 小于 - $lt (&g ...

  3. (第十周)评论Beta发布

    本人所在组:奋斗吧兄弟 按课上展示的顺序对每组进行点评: 1.  飞天小女警 项目:礼物挑选工具 相对于alpha发布时有了很大的进步.项目的界面很漂亮,这个项目的想法很新颖,我很喜欢.礼物的挑选给出 ...

  4. Bing词典vs有道词典比对测试报告——体验篇之成长性及用户控制权

    成长性: 会记住曾经查询过的单词或例句与有道词典实现基本一样,并无特别亮点. 用户有控制权: 必应词典和有道词典都能实现基本的查询前进和后退.以及无法查找结果,能顺利进行反馈. 我们在输入完单词按下回 ...

  5. 【CSAPP笔记】10. 代码优化

    写程序的主要目标是使它在所有可能的情况下都能正确运行(bug free),一个运行得很快但有 bug 的程序是毫无用处的.在 bug free 的基础上,程序员必须写出清晰简洁的代码,这样做是为了今后 ...

  6. 团队作业7——第二次项目冲刺(Beta版本12.07——12.08)

    1.当天站立式会议照片 本次会议在5号公寓3楼召开,本次会议内容:①:熟悉每个人想做的模块.②:根据项目要求还没做的完成. 2.每个人的工作 经过会议讨论后确定了每个人的分工 组员 任务 陈福鹏 实现 ...

  7. 团队作业4——第一次项目冲刺(Alpha版本)2017.11.14

    1.当天站立式会议照片 本次会议在5号公寓1楼召开,本次会议内容:①:熟悉每个人想做的模块.②:根据老师的要求将项目划分成一系列小任务.③:选择项目的开发模式:jsp+servlet+javabean ...

  8. excel的常用技巧

    如何将EXCEL表中SHEET的名字导出 (一)office的操作方法   按下ATL+F11 菜单:插入-模块 复制下面代码,然后按F5运行.会在最前面加张总表,显示工作表名称. Sub mulu( ...

  9. apache重写规则 rewrite

    Rewrite规则表达式的说明: . 匹配任何单字符 [chars] 匹配字符串:chars [^chars] 不匹配字符串:chars text1|text2 可选择的字符串:text1或text2 ...

  10. xshell 常用快捷键

    1.连接mysql数据库mysql -uroot -p -h127.0.0.1 -P3306 2.列出所有sessionshow full processlist; 3.查看20条执行时间最长的SQL ...