Ultra-QuickSort
Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 38258   Accepted: 13784

Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,
Ultra-QuickSort produces the output 
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

Source

 
代码:
 //离散化+树状数组
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define maxn 500000
struct node
{
int val;
int id;
};
node stu[maxn+];
int n;
__int64 cnt;
int bb[maxn+];
int lowbit(int x)
{
return x&(-x);
}
void ope(int x)
{
while(x<=n)
{
bb[x]++;
x+=lowbit(x);
}
}
int sum(int x)
{
int ans=;
while(x>)
{
ans+=bb[x];
x-=lowbit(x);
}
return ans;
}
int cmp(const void *a ,const void *b)
{
return (*(node *)a).val -(*(node *)b).val;
}
int main()
{
int i;
while(scanf("%d",&n),n)
{
memset(bb,,sizeof(int)*(n+));
for(i=;i<n;i++)
{
scanf("%d",&stu[i].val);
stu[i].id=i+;
}
qsort(stu,n,sizeof(stu[]),cmp);
cnt=;
for(i=;i<n;i++)
{
cnt+=sum(n)-sum(stu[i].id);
ope(stu[i].id);
}
printf("%I64d\n",cnt);
}
return ;
}

归并排序:

代码:

 //归并排序求逆序数
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 500000
int cc[maxn+];
int aa[maxn+];
__int64 cnt;
void merge(int low ,int mid,int hig)
{
int i,j,k;
i=low;
j=mid;
k=;
while(i<mid&&j<hig)
{
if(aa[i]>aa[j])
{
cc[k++]=aa[j++];
cnt+=mid-i;
}
else
cc[k++]=aa[i++];
}
while(i<mid)
cc[k++]=aa[i++];
while(j<hig)
cc[k++]=aa[j++];
for(k=,i=low;i<hig;i++)
aa[i]=cc[k++];
}
void merge_sort(int st,int en)
{
int mid;
if(st+<en)
{
mid=st+(en-st)/;
merge_sort(st,mid);
merge_sort(mid,en);
merge(st,mid,en);
}
}
int main()
{
int n,i;
while(scanf("%d",&n),n)
{
cnt=;
for(i=;i<n;i++)
scanf("%d",aa+i);
merge_sort(,n);
printf("%I64d\n",cnt);
}
return ;
}

非递归归并排序:
代码:

 //归并排序求逆序数
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 500000
int cc[maxn+];
int aa[maxn+];
__int64 cnt;
void merge(int low ,int mid,int hig)
{
int i,j,k;
i=low;
j=mid;
k=;
while(i<mid&&j<hig)
{
if(aa[i]>aa[j])
{
cc[k++]=aa[j++];
cnt+=mid-i;
}
else
cc[k++]=aa[i++];
}
while(i<mid)
cc[k++]=aa[i++];
while(j<hig)
cc[k++]=aa[j++];
for(k=,i=low;i<hig;i++)
aa[i]=cc[k++];
}
//void merge_sort(int st,int en)
//{
// int mid;
// if(st+1<en)
// {
// mid=st+(en-st)/2;
// merge_sort(st,mid);
// merge_sort(mid,en);
// merge(st,mid,en);
// }
//}
void merge_sort(int st,int en)
{
int s,t,i;
t=;
while(t<=(en-st))
{
s=t;
t<<=;
i=st;
while(i+t<=en)
{
merge(i,i+s,i+t);
i+=t;
}
if(i+s<en)
merge(i,i+s,en);
}
if(i+s<en)
merge(i,i+s,en);
}
int main()
{
int n,i;
while(scanf("%d",&n),n)
{
cnt=;
for(i=;i<n;i++)
scanf("%d",aa+i);
merge_sort(,n);
printf("%I64d\n",cnt);
}
return ;
}

poj-----Ultra-QuickSort(离散化+树状数组)的更多相关文章

  1. Poj 2299 - Ultra-QuickSort 离散化,树状数组,逆序对

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 52306   Accepted: 19194 ...

  2. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

  3. Ultra-QuickSort(归并排序+离散化树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 50517   Accepted: 18534 ...

  4. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  5. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  6. Code Forces 652D Nested Segments(离散化+树状数组)

     Nested Segments time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  7. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. 【bzoj4627】[BeiJing2016]回转寿司 离散化+树状数组

    题目描述 给出一个长度为n的序列,求所有元素的和在[L,R]范围内的连续子序列的个数. 输入 第一行包含三个整数N,L和R,分别表示寿司盘数,满意度的下限和上限. 第二行包含N个整数Ai,表示小Z对寿 ...

  9. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

随机推荐

  1. tomcat配置301重定向

    tomcat默认情况下不带www的域名是不会跳转到带www的域名的,而且也无法像apache那样通过配置.htaccess来实现.如果想要把不带“www'的域名重定向到带”www"域名下,又 ...

  2. 很酷的C语言技巧

    C语言常常让人觉得它所能表达的东西非常有限.它不具有类似第一级函数和模式匹配这样的高级功能.但是C非常简单,并且仍然有一些非常有用的语法技巧和功能,只是没有多少人知道罢了. 指定的初始化 很多人都知道 ...

  3. 【BZOJ】【2219】数论之神

    中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yu ...

  4. JDBC在Java Web中的应用——分页查询

    分页查询 通过JDBC实现分页查询的方法有很多种,而且不同的数据库机制也提供了不同的分页方式,在这里介绍两种非常典型的分页方法. 通过ResultSet的光标实现分页 通过ResultSet的光标实现 ...

  5. 第二章 Java浮点数精确计算

    1.实际意义 在实际开发中,如果需要进行float或double的精确计算(尤其是财务计算),直接使用float或double是不行的(具体的例子看下边的代码的main方法的测试结果),需要使用Big ...

  6. 简单使用CSS3实现炫酷读者墙效果

    读者墙,在很多网站上都有,没有遇到过的,可以参考度娘:读者墙http://www.baidu.com/s?wd=%B6%C1%D5%DF%C7%BD 使用基础的Html和CSS写出雏形 需要一提的是头 ...

  7. sed 常用的功能

    1.每行后面加入一个空行 sed 'G' num.txt,保留空间(Hold Space)的内容默认值是一个空行.2.每行前面加入一个空行 sed '{x;p;x}' num.txt,交换模式空间和保 ...

  8. 使用第三方控件DotNetBar来美化程序

    VS的控件确实有点丑陋,需要美化一下.我最先接触的就是DotNetBar,一直用它,一般都还稳定.下面简单地讲解一下使用方法 1. 下载破解版DotNetBar 10版本:http://www.cr1 ...

  9. The platform of the target `Pods` (iOS 4.3) is not compatible 错误

    一:使用 cocoaPod错误 The platform of the target `Pods` (iOS 4.3) is not compatible with `AFNetworking (1. ...

  10. CentOS(学习笔记一)

    菜鸟记录 一.配置网络.防火墙等 setup命令 二.查看网络 ifconfig 重启网络 /ect/init.d/network restart 或者ifup ethx(,,)等 查看网络配置文件 ...