莫比乌斯函数&莫比乌斯反演
莫比乌斯函数:http://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html
Orz PoPoQQQ
这个证明过程第三步和第四步一开始没看懂……
第三步:观察计算左边f(k)的系数,可以看出只要d不大于n/k均可以使μ(d)成为f(k)的系数,那么f(k)的系数就是sigma[d丨(n/k)] μ(d) (方括号内为d的范围)
利用整除的性质,重新组合了一下这几项,相当于对一个多项式重新分组提取因式什么的……
第四步:利用sigma μ(d)=1或0 那个性质一:当k小于n时,f(k)的系数为0;当k=n时,为1。证毕QAQ
向JZJ大神致敬!
莫比乌斯反演:
对于一些函数f(n),如果我们很难直接求出它的值,而容易求出倍数和或约数和F(n),那么我们可以通过莫比乌斯反演来求得f(n)的值
例:f(n)表示某一范围内(x,y)=n的数对的数量,F(n)表示某一范围内n|(x,y)的数对的数量
那么直接求f(n)并不是很好求,而F(n)求起来相对无脑一些,我们可以通过对F(n)进行莫比乌斯反演来求得f(n)
例题:
莫比乌斯函数&莫比乌斯反演的更多相关文章
- hdu 1965 (莫比乌斯函数 莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- BZOJ 2440 莫比乌斯函数+容斥+二分
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5473 Solved: 2679[Submit][Sta ...
- 51nod 1240 莫比乌斯函数
题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio& ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛
Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元
Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...
- 莫比乌斯函数 && HDU-1695
莫比乌斯函数定义: $$\mu(d)=\begin{cases}1 &\text{d = 1}\\(-1)^r &\text{$d=p_1p_2...p_r,其中p_i为不同的素数$} ...
- 由 [SDOI2012]Longge的问题 探讨欧拉函数和莫比乌斯函数的一些性质和关联
本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞 ...
- [Luogu P2257] YY的GCD (莫比乌斯函数)
题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...
随机推荐
- Chrome 无痕模式
Windows.Linux 或 Chrome 操作系统:按 Ctrl + Shift + n
- [leetcode DP]91. Decode Ways
A message containing letters from A-Z is being encoded to numbers using the following mapping: 'A' - ...
- iOS 9应用开发教程之ios9的视图
iOS 9应用开发教程之ios9的视图 了解IOS9的视图 在iPhone或者iPad中,用户看到的和摸到的都是视图.视图是用户界面的重要组成元素.本节将主要讲解ios9视图的添加.删除以及位置和大小 ...
- [BZOJ4571][SCOI2016]美味(贪心+主席树)
经典问题,按位贪心,每次需要知道的是”在这一位之前的位都以确定的情况下,能否找到这一位是0/1的数”,这就是在询问[L,R]内某个值域区间是否有数,主席树即可. #include<cstdio& ...
- java线程本地变量
ThreadLocal是什么呢?其实ThreadLocal并非是一个线程的本地实现版本,它并不是一个Thread,而是threadlocalvariable(线程局部变量).也许把它命名为Thre ...
- TSQL update 简单应用小总结
UPDATE 有两种基本的格式.一种是用静态数据来修改表,另一种是用其他表中的数据来修改表.下面是第一种格式: UPDATE #famousjaycees SET jc = 'Jhony cash', ...
- hdu 刷题记录
1007 最近点对问题,采用分治法策略搞定 #include<iostream> #include<cmath> #include<algorithm> using ...
- Alpha冲刺(1/10)——追光的人
1.队友信息 队员学号 队员博客 221600219 小墨 https://www.cnblogs.com/hengyumo/ 221600240 真·大能猫 https://www.cnblogs. ...
- 离线下载Xcode的文档
https://developer.apple.com/library/downloads/docset-index.dvtdownloadableindex 找到里面的文档下载地址 例如iOS 8. ...
- [Visual Studio] SOA服务框架搭建
1.服务框架搭建 2.服务模板创建 3.Nuget引用 4.客户端调用 任务点: 1.分析SOA 2.修改SOA架构名称以及关键字 3.使用Nuget添加引用 4.选择服务模板进行创建 5.尝试调用 ...