A sequence X_1, X_2, ..., X_n is fibonacci-like if:

  • n >= 3
  • X_i + X_{i+1} = X_{i+2} for all i + 2 <= n

Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0.

(Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)

Example 1:

Input: [1,2,3,4,5,6,7,8]
Output: 5
Explanation:
The longest subsequence that is fibonacci-like: [1,2,3,5,8].

Example 2:

Input: [1,3,7,11,12,14,18]
Output: 3
Explanation:
The longest subsequence that is fibonacci-like:
[1,11,12], [3,11,14] or [7,11,18].

Note:

  • 3 <= A.length <= 1000
  • 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
  • (The time limit has been reduced by 50% for submissions in Java, C, and C++.)

Approach #1: unordered_map. [C++]

class Solution {
public:
int lenLongestFibSubseq(vector<int>& A) {
unordered_map<int, int> memo;
int len = A.size();
int ans = 0, temp = 0;
for (int i = 0; i < len; ++i)
memo[A[i]] = i;
for (int i = 0; i < len; ++i) {
for (int j = i + 1; j < len; ++j) {
int ant = 2;
int last_idx = i;
for (int cur_idx = j; cur_idx < len; ) {
temp = A[last_idx] + A[cur_idx];
if (memo.count(temp)) {
ant++;
last_idx = cur_idx;
cur_idx = memo[temp];
} else break;
}
ans = max(ans, ant);
}
}
return ans == 2 ? 0 : ans;
}
};

  

Approach #2: DP. [Java]

class Solution {
public int lenLongestFibSubseq(int[] A) {
int n = A.length;
int res = 0;
int[][] dp = new int[n+1][n+1];
for (int[] row : dp) Arrays.fill(row, 2);
Map<Integer, Integer> pos = new HashMap<>();
for (int i = 0; i < n; ++i) pos.put(A[i], i);
for (int j = 2; j < n; ++j) {
for (int i = j-1; i > 0; --i) {
int prev = A[j] - A[i];
if (prev >= A[i]) break;
if (!pos.containsKey(prev)) continue;
dp[i][j] = dp[pos.get(prev)][i] + 1;
res = Math.max(res, dp[i][j]);
}
}
return res;
}
}

  

Analysis:

http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-873-length-of-longest-fibonacci-subsequence/

873. Length of Longest Fibonacci Subsequence的更多相关文章

  1. 【LeetCode】873. Length of Longest Fibonacci Subsequence 解题报告(Python)

    [LeetCode]873. Length of Longest Fibonacci Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: ...

  2. LC 873. Length of Longest Fibonacci Subsequence

    A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 ...

  3. LeetCode 873. Length of Longest Fibonacci Subsequence

    原题链接在这里:https://leetcode.com/problems/length-of-longest-fibonacci-subsequence/ 题目: A sequence X_1, X ...

  4. [LeetCode] Length of Longest Fibonacci Subsequence 最长的斐波那契序列长度

    A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 ...

  5. [Swift]LeetCode873. 最长的斐波那契子序列的长度 | Length of Longest Fibonacci Subsequence

    A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 ...

  6. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  7. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  8. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  9. Longest Common Subsequence

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

随机推荐

  1. 对于Android开发,啥是高级工程师?

    最近一直在思考自己的技术方向.新的技术永远都是层出不穷,kotlin,flutter,小程序,轻应用等等,但是作为一个老鸟,新的东西,永远都是学不完的,想在新的技术上迭代学习出一个新高度,而增加自己的 ...

  2. bluez蓝牙测试工具

    http://blog.csdn.net/talkxin/article/details/50610984

  3. 深入理解line-height与vertical-align(1)

    http://www.cnblogs.com/xiaohuochai/p/5271217.html

  4. 【Linux】目录文件权限的查看和修改【转】

    转载自:http://zhaoyuqiang.blog.51cto.com/6328846/1214718 ============================================== ...

  5. Determine overlapping rectangles

    https://github.com/Premiumlab/Python-for-Algorithms--Data-Structures--and-Interviews/blob/master/Moc ...

  6. 2018.09.26 bzoj5221: [Lydsy2017省队十连测]偏题(数学推导+矩阵快速幂)

    传送门 由于没有考虑n<=1的情况T了很久啊. 这题很有意思啊. 考试的时候根本不会,骗了30分走人. 实际上变一个形就可以了. 推导过程有点繁杂. 直接粘题解上的请谅解. 不得不说这个推导很妙 ...

  7. jedis 链接池使用(转)

    Jedis作为redis的最佳客户端,它提供了连接池的特性,“连接池”在通常情况下可以有效的提高应用的通信能力,并且这是一种良好的设计模式.Jedis的连接池设计基于apache commons-po ...

  8. Linux各个版本资源下载

    Linux系统各发行版镜像下载(持续更新) == Linux系统各发行版镜像下载(2014年10月更新),如果直接下载不了,请使用迅雷下载.并且注意,我的下载地址,在  迅雷 里才起作用. Linux ...

  9. /usr/include/boost/python/detail/wrap_python.hpp:50:23: fatal error: pyconfig.h: No such file or directory

    https://stackoverflow.com/questions/39111930/usr-include-boost-python-detail-wrap-python-hpp5023-fat ...

  10. 使用Volley上传文件

    使用浏览器上传文件,然后通过Wireshark抓包分析,发现发送的数据大概是这个样子. MIME Multipart Media Encapsulation, Type: multipart/form ...