题目大意:
  给你一个数字串s,一个序列范围l和r,(l和r的数字位数为d)求l到r中有多少个数,满足它的长度为d/2的子串,能够在s中被匹配。

思路:
  首先将s中每一个长度为d/2的子串插入后缀自动机。
  然后数位DP。
  f[i][j]中第一维表示当前树与l和r的关系,包含四个状态,用二进制表示,每一位对应与l和r的不同关系。
  第二维表示当前状态下每个结点匹配到的数的个数。
  每一个数位的状态由上一个数位转移而来,我们用两个DP数组f和g滚动实现。
  用o表示当前枚举的数字,用to表示数字所对应的第一维的状态,则转移方程为f[to[o]][p]=sum(f[j][par[p]])
  然而一开始写AC自动机用的是指针,然后又是各种不方便,所以又用vector很粗糙地实现了结点的遍历。故常数巨大。

 #pragma GCC optimize("O3")
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
const int mod=1e9+;
const int N=,D=;
char s[N],l[D],r[D];
int n,d;
class AhoCorasickAutomaton {
private:
static const int SIGMA_SIZE=;
struct Node {
Node *ch[SIGMA_SIZE],*fail;
bool isEnd;
int id;
Node(const int i) {
memset(ch,,sizeof ch);
fail=NULL;
isEnd=false;
id=i;
}
};
Node *root;
std::vector<Node*> v;
int idx(const char ch) {
return ch-'';
}
int f[][N*D>>],g[][N*D>>];
//第一维表示与l和r的关系
public:
AhoCorasickAutomaton() {
root=new Node(v.size());
v.push_back(root);
}
void insert(char s[],const int len) {
Node *p=root;
for(int i=;i<len;i++) {
const int w=idx(s[i]);
if(!p->ch[w]) {
p->ch[w]=new Node(v.size());
v.push_back(p->ch[w]);
}
p=p->ch[w];
}
p->isEnd=true;
}
void getFail() {
std::queue<Node*> q;
root->fail=root;
for(int i=;i<SIGMA_SIZE;i++) {
if(root->ch[i]) {
root->ch[i]->fail=root;
q.push(root->ch[i]);
} else {
root->ch[i]=root;
}
}
while(!q.empty()) {
Node *p=q.front();
q.pop();
for(int i=;i<SIGMA_SIZE;i++) {
if(p->ch[i]) {
p->ch[i]->fail=p->fail->ch[i];
q.push(p->ch[i]);
} else {
p->ch[i]=p->fail->ch[i];
}
}
}
Node *end=new Node(v.size());
for(unsigned i=;i<v.size();i++) {
Node *p=v[i];
for(int i=;i<SIGMA_SIZE;i++) {
if(p->ch[i]->isEnd) {
p->ch[i]=end;
}
}
}
for(int i=;i<SIGMA_SIZE;i++) {
end->ch[i]=end;
}
v.push_back(end);
}
int dp() {
g[][]=;
int to[];
for(int i=;i<d;i++) {
for(int i=;i<;i++) {
for(unsigned j=;j<v.size();j++) {
f[i][j]=;
}
}
for(int j=;j<;j++) {
int st=(j&)?:idx(l[i]),en=(j>)?:idx(r[i]);//确定当前数位数字的上下界
for(int i=st;i<=en;i++) to[i]=0b11;//默认是在l和r之间
if(~j&) to[st]&=0b10;//如果比l小
if(j<) to[en]&=0b01;//如果比r大
//用&是因为有可能st=en
for(unsigned k=;k<v.size();k++) {
if(!g[j][k]) continue;
for(int o=st;o<=en;o++) {//在当前数位的范围寻找子结点
(f[to[o]][v[k]->ch[o]->id]+=g[j][k])%=mod;
}
}
}
std::swap(f,g);
}
int ret=;
for(int i=;i<;i++) {
ret=(ret+g[i][v.size()-])%mod;
}
return ret;
}
};
AhoCorasickAutomaton acam;
int main() {
scanf("%s%s%s",s,l,r);
n=strlen(s),d=strlen(l);
for(int i=;i<=n-d/;i++) {
acam.insert(&s[i],d/);
}
acam.getFail();
printf("%d\n",acam.dp());
return ;
}

[CodeForces-585F]Digits of Number Pi的更多相关文章

  1. CF585F Digits of Number Pi

    题目 把\(s\)串所有长度为\(\lfloor \frac{d}{2}\rfloor\)的子串插入一个ACAM中,之后数位dp就好了,状态是\(dp_{i,j,0/1}\)第\(i\)位,在ACAM ...

  2. 题解 CF585F 【Digits of Number Pi】

    考虑用数位 \(DP\) 来统计数字串个数,用 \(SAM\) 来实现子串的匹配. 设状态 \(f(pos,cur,lenth,lim,flag)\),表示数位的位数,在 \(SAM\) 上的节点,匹 ...

  3. codeforces 464C. Substitutes in Number

    题目链接 C. Substitutes in Number time limit per test 1 second memory limit per test 256 megabytes input ...

  4. 【codeforces 805D】Minimum number of steps

    [题目链接]:http://codeforces.com/contest/805/problem/D [题意] 给你一个字符串; 里面只包括a和b; 让你把里面的"ab"子串全都去 ...

  5. Codeforces C. Split a Number(贪心大数运算)

    题目描述: time limit per test 2 seconds memory limit per test 512 megabytes input standard input output ...

  6. dp --- Codeforces 245H :Queries for Number of Palindromes

    Queries for Number of Palindromes Problem's Link:   http://codeforces.com/problemset/problem/245/H M ...

  7. Codeforces 279D The Minimum Number of Variables 状压dp

    The Minimum Number of Variables 我们定义dp[ i ][ mask ]表示是否存在 处理完前 i 个a, b中存者 a存在的状态是mask 的情况. 然后用sosdp处 ...

  8. Educational Codeforces Round 11 D. Number of Parallelograms 暴力

    D. Number of Parallelograms 题目连接: http://www.codeforces.com/contest/660/problem/D Description You ar ...

  9. Codeforces 980 E. The Number Games

    \(>Codeforces \space 980 E. The Number Games<\) 题目大意 : 有一棵点数为 \(n\) 的数,第 \(i\) 个点的点权是 \(2^i\) ...

随机推荐

  1. windows 批处理文件调用exe

    @echo offstart "" "C:\Users\Administrator\Desktop\testtaotao\Debug\testtaotao.exe&quo ...

  2. JDK1.8源码之String

    一.String类型 引用博文连接:  https://blog.csdn.net/ylyg050518/article/details/52352993 一.成员变量 //用于存储字符串 priva ...

  3. Python Challenge 第 5 关攻略:peak

    # -*- coding: utf-8 -*- # @Time : 2018/9/26 14:03 # @Author : cxa # @File : pickledemo.py # @Softwar ...

  4. 如何使用vs2012单步调试uGUI(unity3d 5.3f4)

    下载uGUI源代码 uGUI源代码地址:https://bitbucket.org/Unity-Technologies/ui 下载代码工具:tortoisehg-3.6.2-x64.msi http ...

  5. [转]在C#程序设计中使用Win32类库

    http://blog.163.com/j_yd168/blog/static/496797282008611326218/     C# 用户经常提出两个问题:“我为什么要另外编写代码来使用内置于 ...

  6. python面向对象(六)之元类

    元类 1. 类也是对象 在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段.在Python中这一点仍然成立: In [13]: class ObjectCreator(object): . ...

  7. 深度解析eclipse控制台

    第一个按钮:scroll lock 控制台在打印sql语句的时候会一直滚动,用这个按钮可以固定住控制台不乱跑; 第二个按钮:show console when standard out changes ...

  8. Codeforce 295B Greg and Graph(Floyd的深入理解)

    题目链接:http://codeforces.com/problemset/problem/295/B 题目大意:给出n个点的完全有权有向图,每次删去一个点,求删掉该点之前整张图各个点的最短路之和(包 ...

  9. 如何读取Hadoop中压缩的文件

    最近在处理离线数据导入HBase的问题,涉及从Hdfs中读取gz压缩文件,把思路记录下来,以作备用.具体代码如下: package org.dba.util; import java.io.Buffe ...

  10. 浅谈malloc/free和new/delete 的区别

    malloc和new的区别 malloc是库函数,需要包头文件才能成功运行编译:new是操作符(C++中的关键字),需要在C++的环境下使用. malloc既可以在C语言中使用也可以在C++中使用,n ...