题目大意:
  给你一个数字串s,一个序列范围l和r,(l和r的数字位数为d)求l到r中有多少个数,满足它的长度为d/2的子串,能够在s中被匹配。

思路:
  首先将s中每一个长度为d/2的子串插入后缀自动机。
  然后数位DP。
  f[i][j]中第一维表示当前树与l和r的关系,包含四个状态,用二进制表示,每一位对应与l和r的不同关系。
  第二维表示当前状态下每个结点匹配到的数的个数。
  每一个数位的状态由上一个数位转移而来,我们用两个DP数组f和g滚动实现。
  用o表示当前枚举的数字,用to表示数字所对应的第一维的状态,则转移方程为f[to[o]][p]=sum(f[j][par[p]])
  然而一开始写AC自动机用的是指针,然后又是各种不方便,所以又用vector很粗糙地实现了结点的遍历。故常数巨大。

 #pragma GCC optimize("O3")
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
const int mod=1e9+;
const int N=,D=;
char s[N],l[D],r[D];
int n,d;
class AhoCorasickAutomaton {
private:
static const int SIGMA_SIZE=;
struct Node {
Node *ch[SIGMA_SIZE],*fail;
bool isEnd;
int id;
Node(const int i) {
memset(ch,,sizeof ch);
fail=NULL;
isEnd=false;
id=i;
}
};
Node *root;
std::vector<Node*> v;
int idx(const char ch) {
return ch-'';
}
int f[][N*D>>],g[][N*D>>];
//第一维表示与l和r的关系
public:
AhoCorasickAutomaton() {
root=new Node(v.size());
v.push_back(root);
}
void insert(char s[],const int len) {
Node *p=root;
for(int i=;i<len;i++) {
const int w=idx(s[i]);
if(!p->ch[w]) {
p->ch[w]=new Node(v.size());
v.push_back(p->ch[w]);
}
p=p->ch[w];
}
p->isEnd=true;
}
void getFail() {
std::queue<Node*> q;
root->fail=root;
for(int i=;i<SIGMA_SIZE;i++) {
if(root->ch[i]) {
root->ch[i]->fail=root;
q.push(root->ch[i]);
} else {
root->ch[i]=root;
}
}
while(!q.empty()) {
Node *p=q.front();
q.pop();
for(int i=;i<SIGMA_SIZE;i++) {
if(p->ch[i]) {
p->ch[i]->fail=p->fail->ch[i];
q.push(p->ch[i]);
} else {
p->ch[i]=p->fail->ch[i];
}
}
}
Node *end=new Node(v.size());
for(unsigned i=;i<v.size();i++) {
Node *p=v[i];
for(int i=;i<SIGMA_SIZE;i++) {
if(p->ch[i]->isEnd) {
p->ch[i]=end;
}
}
}
for(int i=;i<SIGMA_SIZE;i++) {
end->ch[i]=end;
}
v.push_back(end);
}
int dp() {
g[][]=;
int to[];
for(int i=;i<d;i++) {
for(int i=;i<;i++) {
for(unsigned j=;j<v.size();j++) {
f[i][j]=;
}
}
for(int j=;j<;j++) {
int st=(j&)?:idx(l[i]),en=(j>)?:idx(r[i]);//确定当前数位数字的上下界
for(int i=st;i<=en;i++) to[i]=0b11;//默认是在l和r之间
if(~j&) to[st]&=0b10;//如果比l小
if(j<) to[en]&=0b01;//如果比r大
//用&是因为有可能st=en
for(unsigned k=;k<v.size();k++) {
if(!g[j][k]) continue;
for(int o=st;o<=en;o++) {//在当前数位的范围寻找子结点
(f[to[o]][v[k]->ch[o]->id]+=g[j][k])%=mod;
}
}
}
std::swap(f,g);
}
int ret=;
for(int i=;i<;i++) {
ret=(ret+g[i][v.size()-])%mod;
}
return ret;
}
};
AhoCorasickAutomaton acam;
int main() {
scanf("%s%s%s",s,l,r);
n=strlen(s),d=strlen(l);
for(int i=;i<=n-d/;i++) {
acam.insert(&s[i],d/);
}
acam.getFail();
printf("%d\n",acam.dp());
return ;
}

[CodeForces-585F]Digits of Number Pi的更多相关文章

  1. CF585F Digits of Number Pi

    题目 把\(s\)串所有长度为\(\lfloor \frac{d}{2}\rfloor\)的子串插入一个ACAM中,之后数位dp就好了,状态是\(dp_{i,j,0/1}\)第\(i\)位,在ACAM ...

  2. 题解 CF585F 【Digits of Number Pi】

    考虑用数位 \(DP\) 来统计数字串个数,用 \(SAM\) 来实现子串的匹配. 设状态 \(f(pos,cur,lenth,lim,flag)\),表示数位的位数,在 \(SAM\) 上的节点,匹 ...

  3. codeforces 464C. Substitutes in Number

    题目链接 C. Substitutes in Number time limit per test 1 second memory limit per test 256 megabytes input ...

  4. 【codeforces 805D】Minimum number of steps

    [题目链接]:http://codeforces.com/contest/805/problem/D [题意] 给你一个字符串; 里面只包括a和b; 让你把里面的"ab"子串全都去 ...

  5. Codeforces C. Split a Number(贪心大数运算)

    题目描述: time limit per test 2 seconds memory limit per test 512 megabytes input standard input output ...

  6. dp --- Codeforces 245H :Queries for Number of Palindromes

    Queries for Number of Palindromes Problem's Link:   http://codeforces.com/problemset/problem/245/H M ...

  7. Codeforces 279D The Minimum Number of Variables 状压dp

    The Minimum Number of Variables 我们定义dp[ i ][ mask ]表示是否存在 处理完前 i 个a, b中存者 a存在的状态是mask 的情况. 然后用sosdp处 ...

  8. Educational Codeforces Round 11 D. Number of Parallelograms 暴力

    D. Number of Parallelograms 题目连接: http://www.codeforces.com/contest/660/problem/D Description You ar ...

  9. Codeforces 980 E. The Number Games

    \(>Codeforces \space 980 E. The Number Games<\) 题目大意 : 有一棵点数为 \(n\) 的数,第 \(i\) 个点的点权是 \(2^i\) ...

随机推荐

  1. [转]Ubuntu下ROS开发环境搭建(QT+ros_qtc_plugin)

    ROS与C++入门教程-搭建开发环境(QT+ros_qtc_plugin) PS : 在“安装ros_qtc_plugin插件”这一步中,原文提到“ Ubuntu 14.04使用apt-get方式安装 ...

  2. 基于NIO的同步非阻塞编程完整案例,客户端发送请求,服务端获取数据并返回给客户端数据,客户端获取返回数据

    这块还是挺复杂的,挺难理解,但是多练几遍,多看看研究研究其实也就那样,就是一个Selector轮询的过程,这里想要双向通信,客户端和服务端都需要一个Selector,并一直轮询, 直接贴代码: Ser ...

  3. 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计

    @ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...

  4. idea开发工具下载安装教程

    我用这款工具主要用于java开发 在安装这个工具之前需要配置java的环境 java的jdk环境配置 jdk:1.8 jdk官网下载链接 --->点我 进入之后,下拉  选择 jdk1.8版本 ...

  5. 使用离线包部署kubernetes 1.9.0、kubernetes-dashboard 1.8

    =============================================== 2018/3/22_第2次修改                       ccb_warlock 更新 ...

  6. github后端开发面试题大集合(一)

    作者:小海胆链接:https://www.nowcoder.com/discuss/3614?type=0&order=0&pos=5&page=0?from=wb来源:牛客网 ...

  7. MEF实现设计上的“松耦合”(二)

    介绍了下MEF的基础用法,让我们对MEF有了一个抽象的认识.当然MEF的用法可能不限于此,比如MEF的目录服务.目录筛选.重组部件等高级应用在这里就不做过多讲解,因为博主觉得这些用法只有在某些特定的环 ...

  8. UML中的6大关系(关联、依赖、聚合、组合、泛化、实现)

    UML定义的关系主要有六种:依赖.类属.关联.实现.聚合和组合.这些类间关系的理解和使用是掌握和应用UML的关键,而也就是这几种关系,往往会让初学者迷惑.这里给出这六种主要UML关系的说明和类图描述, ...

  9. day7面向对象--反射

    反射 通过字符串映射或修改程序运行时的状态.属性.方法, 有以下4个方法     1.getattr(object, name[, default]) -> value Get a named ...

  10. Inno Setup使用

    Inno Setup是一个开源的安装包打包软件,下载地址是:http://www.jrsoftware.org/isdl.php 使用引导界面创建一个安装包打包 配置参考官方文档:http://www ...