K - Watermelon Full of Water

Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

Appoint description:
 

Description

Watermelon is very popular in the hot summer. Students in ZJU-ICPC Team also love watermelon very much and they hope that they can have watermelon to eat every day during the summer vacation. Suppose there are n days and every day they can buy only one watermelon. The price of watermelon may be different in each day. Besides, sometimes the watermelon they choose to buy may be very big, which means if they buy this watermelon, they will need several days to eat it up. The students want to spend the minimum money to buy enough watermelon so that they can eat watermelon every day. Can you help them?

Notice: When they buy a new watermelon, if they still have an old watermelon, they will throw the old one into dustbin. For example, suppose they buy a watermelon on the fisrt day, and it needs 4 days to eat up the watermelon. But if they buy a new watermelon on the second day and it needs 2 days to eat up the new watermelon, then they will throw the old one, and they have to buy a new watermelon on the fourth day since they don't have any watermelon to eat on that day.

Input

The input contains multiple test cases ( no more than 200 test cases ).
In each test case, first there is an integer, n ( 1 <= n <=50000 ) , which is the number of summer days.
Then there is a line containing n positive integers with the ith integer indicating the price of the watermelon on the ith day.
Finally there is line containing n positive integers with the ith integer indicating the number of days students need to eat up the watermelon bought on the ith day.
All these integers are no more than 100000 and integers are seperated by a space.

Output

For each case, output one line with an integer which is the minimum
money they must spend so that they can have watermelon to eat every day.

Sample Input

4
10 20 1 40
3 2 3 1

Sample Output

11
题意:有n天,每天都可以买西瓜,西瓜有价格和可以吃的时间,同时只能拥有一个西瓜,然后问你最少花费,让自己每天都能吃西瓜
比较普通的DP题,转移方程是当if(last[k]+k-1>i) dp[i]=min(dp[i],dp[k-1]+val[k])
但是普普通通的做会T掉,所以得优先队列优化一下
int p[N],last[N];
long long dp[N];
struct node
{
long val;
int last;
bool operator<(const node& a)const
{
return val>a.val;
}
};
int main()
{
int n;
int i;
while(scanf("%d",&n)!=EOF)
{
for(i=;i<=n;i++)
scanf("%d",&p[i]);
for(i=;i<=n;i++)
scanf("%d",&last[i]);
priority_queue<node> q;
node temp;
dp[]=p[];
temp.val=p[]; temp.last=last[];
q.push(temp);
for(i=;i<=n;i++)
{
temp.val=dp[i-]+p[i];
temp.last=last[i]+i-;
q.push(temp);
while(q.top().last<i) q.pop();
dp[i]=q.top().val;
}
printf("%lld\n",dp[n]);
}
return ;
}
												

ZOJ 3632 K - Watermelon Full of Water 优先队列优化DP的更多相关文章

  1. XJOI3602 邓哲也的矩阵(优先队列优化DP)

    题目描述: 有一个 n×m的矩阵,现在准备对矩阵进行k次操作,每次操作可以二选一 1: 选择一行,给这一行的每一个数减去p,这种操作会得到的快乐值等于操作之前这一行的和 2: 选择一列,给这一列的每一 ...

  2. Atcoder 2566 3N Numbers(优先队列优化DP)

    問題文N を 1 以上の整数とします. 長さ 3N の数列 a=(a1,a2,…,a3N) があります. すぬけ君は.a からちょうど N 個の要素を取り除き.残った 2N 個の要素を元の順序で並べ. ...

  3. 最短路算法模板合集(Dijkstar,Dijkstar(优先队列优化), 多源最短路Floyd)

    再开始前我们先普及一下简单的图论知识 图的保存: 1.邻接矩阵. G[maxn][maxn]; 2.邻接表 邻接表我们有两种方式 (1)vector< Node > G[maxn]; 这个 ...

  4. poj 1511 优先队列优化dijkstra *

    题意:两遍最短路 链接:点我 注意结果用long long #include<cstdio> #include<iostream> #include<algorithm& ...

  5. 【bzo1579】拆点+dijkstra优先队列优化+其他优化

    题意: n个点,m条边,问从1走到n的最短路,其中有K次机会可以让一条路的权值变成0.1≤N≤10000;1≤M≤500000;1≤K≤20 题解: 拆点,一个点拆成K个,分别表示到了这个点时还有多少 ...

  6. hdu 1874(最短路 Dilkstra +优先队列优化+spfa)

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  7. ZOJ 3874 Permutation Graph (分治NTT优化DP)

    题面:vjudge传送门 ZOJ传送门 题目大意:给你一个排列,如果两个数构成了逆序对,就在他们之间连一条无向边,这样很多数会构成一个联通块.现在给出联通块内点的编号,求所有可能的排列数 推来推去容易 ...

  8. 晴天小猪历险记之Hill(Dijkstra优先队列优化)

    描述 这一天,他来到了一座深山的山脚下,因为只有这座深山中的一位隐者才知道这种药草的所在.但是上山的路错综复杂,由于小小猪的病情,晴天小猪想找一条需时最少的路到达山顶,但现在它一头雾水,所以向你求助. ...

  9. 地铁 Dijkstra(优先队列优化) 湖南省第12届省赛

    传送门:地铁 思路:拆点,最短路:拆点比较复杂,所以对边进行最短路,spfa会tle,所以改用Dijkstra(优先队列优化) 模板 /******************************** ...

随机推荐

  1. Callable和futrue、ExecutorService的用法

    首先说明是为了解决什么问题? 为了解决主线程无谓等待浪费服务器资源的问题.当主线程执行一个费时的操作时,比如客户端发起一个请求,该请求在服务器端处理很复杂,如需要调用其他系统的接口,总之比较耗时.这时 ...

  2. java 判断上传文件大小

    /** * 判断文件大小 * * @param file * 文件 * @param size * 限制大小 * @param unit * 限制单位(B,K,M,G) * @return */ pu ...

  3. iframe 同域下父子页面的通信

    //共同引用的JS文件 common.js ; (function (window, $) { $(function ($) { window.trip = window.trip || {}; wi ...

  4. Docker Compose practice

    Docker Compose 什么是 Docker-Compose? Compose 可以让用户在集群中部署分布式应用.简单的说,Docker Compose 属于一个"应用层"的 ...

  5. 读书笔记 effective c++ Item 42 理解typename的两种涵义

    1. class和typename含义相同的例子 问题:在下面的模板声明中class和typename的区别是什么? template<class T> class Widget; // ...

  6. linux中查看结构体和宏

    1.进入目录/usr/include cd /usr/include/ 2.生成ctags文件sudo make ctags -R 3.vim -t 结构体(宏)名称 4.找到相应的宏或者结构体 5. ...

  7. java jps命令使用解析

    在linux环境下显示一个进程的信息大家可能一直都在使用ps命令,比如用以下命令来显示当前系统执行的java进程: ps -ef | grep java 针对java的进程,jdk1.5以后提供了一个 ...

  8. Executor

    一.为什么需要Executor?为了更好的控制多线程,JDK提供了一套线程框架Executor,帮助开发人员有效的进行线程控制.他们都在java.util.concurrent包中,是JDK并发包的核 ...

  9. jquery图片延迟加载方案解决图片太多加载缓慢问题

    当在做一个图片展示站的时候,一个页面加载的图片过多会,如果服务器的带宽跟不上,明显会感觉到页面很卡,严重的浏览器也会崩溃,所以我推荐采用即看即所得的模式,当滚动到下一屏时才进行加载图片. 注意:即便如 ...

  10. git clone push需要root权限解决方法

    重新装了Linux发现使用git命令必须要sudo,否则会提示权限不够. 解决办法:在ssh生成id_rsa.pub密钥时实际上有两个,根目录的家里.ssh文件夹里有一个,用户家里.sh文件夹里有一个 ...