【题目大意】

n头牛从小到大排,它们之间某些距离不能大于一个值,某些距离不能小于一个值,求第一头牛和第N头牛之间距离的最大值。

【思路】

由题意可以得到以下不等式d[AL]+DL≥d[BL];d[BD]+(-DD)≥d[AD];d[i+1]+0≥d[i],显然是差分约束系统。即构造从AL到BL权值为DL的边,从BD到AD构造权值为-DD的负边,从i+1到i构造权值为0的边。最后求最短路径。安利一个证明(点我)。

对于差分约束系统要注意的是,如果要求最大距离,用最短路径;求最小距离,用最长路径,要根据实际情况判断。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=+;
struct Rec
{
int ori,des,len;
};
int n,ml,md;
int first[MAXN/],next[MAXN*+];
Rec edge[MAXN*+];
int vis[MAXN/],dis[MAXN/],appear[MAXN/]; void init()
{
memset(first,-,sizeof(first));
scanf("%d%d%d",&n,&ml,&md);
int j=-;
for (int i=;i<ml;i++)
{
j++;
scanf("%d%d%d",&edge[j].ori,&edge[j].des,&edge[j].len);
edge[j].ori--;edge[j].des--;
next[j]=first[edge[j].ori];
first[edge[j].ori]=j;
}
for (int i=;i<md;i++)
{
j++;
scanf("%d%d%d",&edge[j].des,&edge[j].ori,&edge[j].len);
edge[j].ori--;edge[j].des--;
edge[j].len=-edge[j].len;
next[j]=first[edge[j].ori];
first[edge[j].ori]=j;
}
for (int i=;i<n;i++)
{
j++;
edge[j].ori=i;edge[j].des=i-;edge[j].len=;
next[j]=first[edge[j].ori];
first[edge[j].ori]=j;
}
} void SPFA()
{
queue<int> que;
memset(vis,,sizeof(vis));
memset(appear,,sizeof(appear));
for (int i=;i<n;i++) dis[i]=0x7fffffff;
dis[]=;
que.push();
vis[]=;
appear[]++; while (!que.empty())
{
int head=que.front();
int k=first[head];
while (k!=-)
{
Rec e=edge[k];
if (dis[e.des]>dis[e.ori]+e.len)
{
dis[e.des]=dis[e.ori]+e.len;
if (!vis[e.des])
{
appear[e.des]++;
if (appear[e.des]>n)
{
cout<<-<<endl;
return;
}
que.push(e.des);
vis[e.des]=;
}
}
k=next[k];
}
vis[head]=;
que.pop();
}
if (dis[n-]==0x7fffffff) cout<<-<<endl; else cout<<dis[n-]<<endl;
} int main()
{
init();
SPFA();
system("pause");
return ;
}

【差分约束系统/SPFA】POJ3169-Layout的更多相关文章

  1. 差分约束系统 + spfa(A - Layout POJ - 3169)

    题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...

  2. BZOJ 2330 [SCOI2011]糖果 ——差分约束系统 SPFA

    最小值求最长路. 最大值求最短路. 发现每个约束条件可以转化为一条边,表示一个点到另外一个点至少要加上一个定值. 限定了每一个值得取值下界,然后最长路求出答案即可. 差分约束系统,感觉上更像是两个变量 ...

  3. 差分约束系统 POJ 3169 Layout

    题目传送门 题意:有两种关系,n牛按照序号排列,A1到B1的距离不超过C1, A2到B2的距离不小于C2,问1到n的距离最大是多少.如果无限的话是-2, 如果无解是-1 分析:第一种可以写这样的方程: ...

  4. 差分约束系统+spfa(B - World Exhibition HDU - 3592 )

    题目链接:https://cn.vjudge.net/contest/276233#problem/B 思路和上一个一样,不过注意点有两个,第一,对dis数组进行初始化的时候,应该初始化成ox3f3f ...

  5. PKU 1201 Intervals(差分约束系统+Spfa)

    题目大意:原题链接 构造一个集合,这个集合内的数字满足所给的n个条件,每个条件都是指在区间[a,b]内至少有c个数在集合内.问集合最少包含多少个点.即求至少有多少个元素在区间[a,b]内. 解题思路: ...

  6. POJ3169 Layout

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  7. ACM/ICPC 之 差分约束系统两道(ZOJ2770-POJ1201)

    当对问题建立数学模型后,发现其是一个差分方程组,那么问题可以转换为最短路问题,一下分别选用Bellmanford-SPFA解题 ZOJ2770-Burn the Linked Camp //差分约束方 ...

  8. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  9. POJ3169 Layout(差分约束系统)

    POJ3169 Layout 题意: n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有ml组(u, v, w)的约束关系,表示牛 ...

随机推荐

  1. 查看Linux系统版本的几种方法

    第一种: cat /etc/os-release # 或者 cat /etc/redhat-release 结果如下: NAME="Ubuntu" VERSION="16 ...

  2. 【Tomcat】Tomcat容器 web.xml详解

      Tomcat的安装目录下的conf目录下的web.xml文件有许多配置,例如: <init-param> <param-name>debug</param-name& ...

  3. 系统架构之负载均衡【F5\nginx\LVS\DNS轮询\】

    在做系统架构规划的时候,负载均衡,HA(高可用性集群,是保证业务连续性的有效解决方案,一般有两个或两个以上的节点,且分为活动节点及备用节点,当活动节点出现故障的时候,由备用节点接管)都是经常需要考虑的 ...

  4. 数据库-mysql视图

    视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,并可以将其当作表来使用 一:创建视图 create view view ...

  5. python并行计算(持续更新)

    工作中需要对tensorflow 的一个predict结果加速,利用python中的线程池 def getPPLs(tester,datas): for line in datas: tester(l ...

  6. SQL 标量函数-----日期函数 day() 、month()、year()

    select day(createtime) from life_unite_product --取时间字段的天值 select month(createtime) from life_unite_p ...

  7. 如何修改SQL Server 2000的数据库逻辑与物理名称

    在项目中使用SQL Server 2000创建了一个数据库,发现名称与另一个数据库太相似,于是决定更改名称,包括: 在企业管理器中看到的数据库名,也是实际应用程序中连接用的数据库名称: 在磁盘上看的物 ...

  8. The Art Of Computer Programming: 1.1

    The Art Of Computer Programming: 1.1 */--> div.org-src-container { font-size: 85%; font-family: m ...

  9. Effective STL 学习笔记:19 ~ 20

    Effective STL 学习笔记:19 ~ 20 */--> div.org-src-container { font-size: 85%; font-family: monospace; ...

  10. 二进制方式部署Kubernetes 1.6.0集群(开启TLS)

    本节内容: Kubernetes简介 环境信息 创建TLS加密通信的证书和密钥 下载和配置 kubectl(kubecontrol) 命令行工具 创建 kubeconfig 文件 创建高可用 etcd ...