《剑指offer》面试题32----从1到n整数中1出现的次数
题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数。例如输入12,从1到12这些整数中包含1的数字有1,10,11和12,1一共出现了5次。
解法一:不考虑时间效率的解法(略)
ps:我感觉是个程序员都能想到这第一种解法,时间复杂度O(nlogn)。这个方法没有什么意义,但是简单易懂,去小公司足够了,这里不讲了。
解法二:分析数字规律,时间复杂度O(logn).
这是我写这篇文章的初衷。《剑指offer》洋洋洒洒写了几十行代码,然而在leetcode上大神却只用了5行!当天晚上智障,脑子全是浆糊,竟然没有看懂什么意思=。=,我一度怀疑智商受到了碾压。然而在今天睡眠比较充足,头脑比较清醒的情况下终于理顺了思路~
其实这道题目很多地方都有讲,包括《编程之美》,但是也有20行左右的代码,没耐心了。其它的一些帖子讲的乱七八糟,这对于我这种爱简洁,爱干净,还有严重强迫症的人是不能忍的,下面强迫症患者要开始装逼了。。。
先上代码:
package test; public class Question_32 {
public static int countDigitOne(int n) {
int ones = 0;
for (long m = 1; m <= n; m *= 10)
ones += (n/m + 8) / 10 * m + (n/m % 10 == 1 ? n%m + 1 : 0);
return ones;
} public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(countDigitOne(12)); } }
核心代码只有line4~line9。leetcode原链接: https://discuss.leetcode.com/topic/18054/4-lines-o-log-n-c-java-python 牛客网链接: https://www.nowcoder.com/questionTerminal/bd7f978302044eee894445e244c7eee6 。
装逼模式开启:
我们从一个5位的数字讲起,先考虑其百位为1的情况。分3种情况讨论:
百位数字>=2 example: 56 当其百位为>=时,有以下这些情况满足(为方便起见,计312为a,56为b):
100 ~ 199
100 ~ 199
.....
100 ~ 199
余下的都不满足!
因此,百位>=2的5位数字,其百位为1的情况有(a/10+1)*100个数字 (a/10+1)=>对应于 0 ~ 31,且每一个数字,对应范围是100个数(末尾0-99)
百位数字 ==1 example: 56 当其百位为1时,有以下这些情况满足:
100 ~ 199
100 ~ 199
......
100 ~ 199
100 ~ 156
因此,百位为1的5位数字,共有(a/10)*100+(b+1)
百位数字 ==0 example: 56 当其百位为0时,有以下这些情况满足:
100 ~ 199
100 ~ 199
100 ~ 199
其余都不满足
因此,百位数为0的5位数字,共有(a/10)*100个数字满足要求
我们可以进一步统一以下表达方式,即当百位>=2或=0时,有[(a+8)/10]*100,当百位=1时,有[(a+8)/10]*100+(b+1)。用代码表示就是: [(a+8)/10]*100+(a%10==1)?(b+1):0;
为什么要加8呢?因为只有大于2的时候才会产生进位等价于(a/10+1),当等于0和1时就等价于(a/10)。另外,等于1时要单独加上(b+1),这里我们用a对10取余是否等于1的方式判断该百位是否为1。
Question:有缺陷或逻辑错误吗?
有人可能会有疑惑,比如11100,这个数在考虑百位为1的时候算作了一次,在考虑千位的时候也算了一次,在考虑万位为1的时候又算了一次,一共计了3次,这不是明显重复吗?
我的回答是,不重复!
分析:题目中要我们统计出现的1的个数,那么我们可以看到11100一共是3个1,如果剔除了重复的情况只考虑一次才会是问题。换言之,在计算从1到n整数中1的出现次数时,我们把10位出现1的情况个数加上百位出现1的情况个数一直加到最高位是1的情况的个数,这里面一个数可能被统计过多次;11100百位出现1,千位和万位都为1,那么被重复统计了3次
代码分析:
public static int countDigitOne(int n) {
int ones = 0;
for (long m = 1; m <= n; m *= 10)
ones += (n/m + 8) / 10 * m + (n/m % 10 == 1 ? n%m + 1 : 0);
return ones;
}
for (long m = 1; m <= n; m *= 10) 在这里的作用是,从个位开始考虑,再到十位,百位,千位,一直到超出这个数!为什么m要用long型呢?因为n可能没有超过整型的表达范围(int刚好可以表示n),而10*m恰恰有可能刚刚超过!ones += (n/m + 8) / 10 * m + (n/m % 10 == 1 ? n%m + 1 : 0); 这里ones用于表示1的个数,当m=100时,n/m其实代表的是a,而n%m代表的是b,此时考虑的是百位为1的情况;当m=1000,自然考虑的就是千位等于1的情况了~ 至于为什么加8,那个三目运算符是干嘛子用的上面都已经讲过了。
最后,总结一下。这道题网上答案太多了,但是我觉得只有这种方法最让人眼前一亮。抖机灵的不少,比如用java字符串处理的,自以为很厉害,其实根本没含金量(时间复杂度O(nlogn)啊!)关键是这还有赞同的,不知道算法分析是怎么学的。《剑指offer》和《编程之美》的答案可能曾经是最佳,但是现在被更好的方法替换了,而作者并不知情。一本好书看3遍,胜过3本好书看一遍!相信一个月后,我对这道题的印象可能就没有多少了,及时整理,利人利己,温故而知新~
《剑指offer》面试题32----从1到n整数中1出现的次数的更多相关文章
- 剑指Offer:面试题32——从1到n整数中1出现的次数(java实现)
问题描述: 输入一个整数n,求1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11,12,1一共出现了5次. 思路:(不考虑时间效率的解法,肯定不 ...
- 【剑指Offer面试编程题】题目1373:整数中1出现的次数--九度OJ
题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU发来求助信,希望亲们能帮帮他.问题是:求出1~13的整数中1出现的次数,并算出100~130 ...
- 剑指Offer的学习笔记(C#篇)-- 整数中1出现的次数(从1到n整数中1出现的次数)
题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...
- 【剑指Offer】31、从1到n整数中1出现的次数
题目描述: 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他 ...
- 【剑指Offer面试题】 九度OJ1517:链表中倒数第k个结点
鲁棒性是指程序可以推断输入是否符合规范要求,并对不和要求的输入予以 合理的处理. 题目链接地址: http://ac.jobdu.com/problem.php?pid=1517 题目1517:链表中 ...
- 剑指offer——面试题32.1:分行从上到下打印二叉树
void BFSLayer(BinaryTreeNode* pRoot) { if(pRoot==nullptr) return; queue<BinaryTreeNode*> pNode ...
- 剑指offer——面试题32:从上到下打印二叉树
void BFS(BinaryTreeNode* pRoot) { if(pRoot==nullptr) { cout<<"empty binary tree!"< ...
- 【剑指offer 面试题38】数字在排序数组中出现的次数
思路: 利用二分查找,分别查找待统计数字的头和尾的下标,最后做差加一即为结果. C++: #include <iostream> #include <vector> using ...
- 剑指offer——面试题15.2:判断两个整数m和n的二进制中相差多少位
#include"iostream" using namespace std; int CountDifferentBit(int m,int n) { ,diff=m^n; wh ...
- 面试题32.从1到n整数中1出现的次数
题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如输入12,从 1到12这些整数中包含1的数字中1,10,11和12,1一共出现了5次 本题可以直接变量1到n的n个数然后分别计 ...
随机推荐
- c# combobox向上展开
1.问题情境:实际中的下拉框默认向下扩展,如果屏幕下方空间不足,会向上扩展. 向下扩展情况下,有时候会超出form窗体. 2.解决办法: 寻找相关属性无果. 退而求其次,重画item的框.发现Draw ...
- CS小分队第二阶段冲刺站立会议(5月31日)
昨日成果:查找相关C#资料,清楚一些bug 遇到问题:系统获取的图标分辨率太低,网上找来的获取图标的代码看不太懂 今日计划:完善获取文件图标功能,并且能够删除获取的图标文件
- Chapter 1 概述
软件分为通用软件和应用软件,具有复杂.不可见和不断变化的特点:从出现到现在共经历了四个重要的发展阶段,但现在的软件发展依然存在着许多问题. 软件工程是采用工程的概念.原理.技术和方法来开发与维护软件, ...
- NABCD(网上投票系统)
网上投票系统 N(need) 投票这件事情,在所有事情上都可能用得到,在互联网的影响下,投票的范围变得越来越广,比如在商业的里,往往要做市场分析,那么在互联网这个大的前提下,用网上投票系统来获取用户的 ...
- golang数据类型转换
int--string //string到int value_int,err:=strconv.Atoi(string) //int到string str:=strconv.Itoa(value_in ...
- LeetCode题解:(19) Remove Nth Node From End of List
题目说明 Given a linked list, remove the nth node from the end of list and return its head. For example, ...
- beta阶段成果展示博客
跟着我们一一点一点揭开蒙娜丽莎的微笑 - 本次beta阶段之前,我们团队,对其他组在事后诸葛亮期间对我们的评价进行深刻的审视,特别是缺点方面,开了好几次的站立会议,专门讨论beta的主要方向和任务.最 ...
- python调用Sikuliapi
Sikuli是由MIT(麻省理工学院) 研究团队发布的一种图形化编程技术(编程小白的福音),使用Sikuli你只需要会写HelloWorld这种最基本的编程技能即可,用Sikuli不需要去写出一行行复 ...
- linux 关机、重启
一.重启命令:1.reboot2.shutdown -r now 立刻重启(root用户使用)3.shutdown -r 10 过10分钟自动重启(root用户使用) 4.shutdown -r 20 ...
- 前端基础:HTTP 状态码详解
HTTP 状态码详解 1xx(信息类):表示接收到请求并继续处理 100 客户端应当继续发送请求.这个临时响应是用来通知客户端他的部分请求已经被服务器接收,且仍未被拒绝.客户端应当继续发送请求的剩余部 ...