http://www.lydsy.com/JudgeOnline/problem.php?id=3930 (题目链接)

题意

  求在${[L,R]}$中选出${n}$个数,可以相同,使得它们的${gcd=K}$的方案数。

Solution

  首先,我们有一个性质:如果选出来的数不全相同,那么它们的${gcd}$不会超过选出来的最大数与最小数之差。

  为什么是这样呢,更相减损术嘛。

  所以就好做咯,枚举gcd,然后瞎搞搞,最后再把全部选一个数的方案加上就好了。

代码

// bzoj3930
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100010;
LL f[maxn];
int n,K,L,R; LL power(LL a,LL b) {
LL res=1;
while (b) {
if (b&1) (res*=a)%=MOD;
b>>=1;(a*=a)%=MOD;
}
return res;
}
int main() {
scanf("%d%d%d%d",&n,&K,&L,&R);
for (int i=R-L;i>=1;i--) if (i%K==0) {
int l=(L-1)/i,r=R/i;
f[i]=power(r-l,n)-(r-l);
for (int j=2;i*j<=R-L;j++)
f[i]=(f[i]-f[i*j]+MOD)%MOD;
}
if (K>=L && K<=R) (++f[K])%=MOD;
printf("%lld",f[K]);
return 0;
}

【bzoj3930】 CQOI2015—选数的更多相关文章

  1. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  2. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  3. BZOJ3930 [CQOI2015]选数 【容斥】

    题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...

  4. BZOJ3930 [CQOI2015]选数【莫比乌斯反演】

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  6. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  7. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  8. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

  9. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  10. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

随机推荐

  1. Linux系统初探过程总结

    Linux系统初探的过程大约用了一周的时间,这周基本将Linux系统安装,PostgreSQL安装,Nginx服务器安装,ASP.NET Core应用部署都走了一遍.由于以前没有怎么接触和使用过Lin ...

  2. 1.VBA 基本概念——《Excel VBA 程序开发自学宝典》

    1.1 常见对象及含义 对象名 含义 application 整个Excel应用程序 window 窗口 worksheet  一个工作表 sheets 指定工作簿的所有工作表的合集 shaperan ...

  3. stat命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/yexiangcsdn/article/details/81012732 stat命令用于显示文件的状态信息.stat命令的 ...

  4. Java中&、|、&&、||详解

    1.Java中&叫做按位与,&&叫做短路与,它们的区别是: & 既是位运算符又是逻辑运算符,&的两侧可以是int,也可以是boolean表达式,当&两侧 ...

  5. Django_信号

    目录 Django信号介绍 Django内置信号 信号种类 信号注册 自定义信号 实测 内置信号 自定义信号 Django信号介绍 Django中提供了“信号调度”,用于在框架执行操作时解耦.通俗来讲 ...

  6. PSP Daily软件beta版本——基于spec评论

    题目要求: 每个小组评论其他小组beta发布作品的软件功能说明书. 试用(并截图)所有其他小组的beta作品,与软件功能说明书对比,评论beta作品对软件功能说明书的实现. 根据软件功能说明书,测试所 ...

  7. Daily Scrum (2015/10/21)

    今天可以说是项目正式开始的第一天,由于大家缺乏做团队项目的经验,对TFS的使用都还不太熟悉,所以今天大家的主要工作是熟悉TFS的使用和对代码进行初步的理解.我们预计需要2-3天时间来理解透彻源代码.以 ...

  8. 团队博客作业Week3 --- 项目选择&&需求疑问

    项目选择 经过团队内所有成员一致探讨,我们团队选择完善和改进之学霸系统的第二个子模块,即:网站内容结构定义和数据处理.具体的要求如下:(摘自Xueba系统项目需求) 网站内容结构定义和数据处理(Con ...

  9. 第三次博客作业JSF

    JSF规格化设计发展史以及为什么得到人们重视 查阅了n多资料但是仍然没找到. 就说一些jsf的优势吧. 优势:    (1)UI组件 (2)事件驱动模式 (3)用户界面到业务逻辑的直接映射 (4)程序 ...

  10. shiro+springmvc 都使用缓存

    基于涛哥shiro案例16 的这时候要配置service方法的缓存 在spring-config.xml添加 <context:annotation-config /> <cache ...