Description

  

  传送门

  

   

  

Solution

  

​  记\(a=\lfloor\frac n p\rfloor\),\(b=n\%p\)。我们尝试使用Lucas定理展开这些组合数,寻找公共部分。以下除法都作整数下取整除法:

\[\begin{aligned}
f(n,k)&=\sum_{i=0}^kC_n^i\mod p\\
&=\sum_{i=0}^{ap-1}C_{n/p}^{i/p}*C_{n\%p}^{i\%p}+\sum_{i=ap}^{n}C_{n/p}^{i/p}*C_{n\%p}^{i\%p}\\
&=(\sum_{i=0}^{a-1}C_{n/p}^i*\sum_{j=0}^{p-1}C_{n\%p}^j)+C_{n/p}^{a}*\sum_{i=0}^bC_{n\%p}^i\\
&=f(n/p,a-1)*f(n\%p,p-1)+C_{n/p}^{k/p}f(n\%p,k\%p)
\end{aligned}
\]

     

  

  所以只需要预处理\(f(0...p-1,0...p-1)\)的值就可以直接计算了。

  

  注意判断k<0的情况,此时\(f\)为0。

  

  

  

  

  

Code

  

#include <cstdio>
using namespace std;
typedef long long ll;
const int MOD=2333,N=2351;
int c[N][N],f[N][N];
inline int plus(int x,int y){return (x+y)%MOD;}
inline int mul(int x,int y){return 1LL*x*y%MOD;}
inline int C(ll n,ll m){
if(n<m) return 0;
if(n<MOD&&m<MOD) return c[n][m];
return mul(C(n/MOD,m/MOD),C(n%MOD,m%MOD));
}
int solve(ll n,ll k){
if(k<0) return 0;
if(n<N&&k<N) return f[n][k];
return plus(mul(solve(n/MOD,k/MOD-1),f[n%MOD][MOD-1]),mul(C(n/MOD,k/MOD),f[n%MOD][k%MOD]));
}
void init(){
c[0][0]=1;
for(int i=1;i<N;i++){
c[i][0]=1;
for(int j=1;j<N;j++) c[i][j]=plus(c[i-1][j],c[i-1][j-1]);
}
for(int i=0;i<N;i++){
f[i][0]=1;
for(int j=1;j<N;j++) f[i][j]=plus(f[i][j-1],c[i][j]);
}
}
int main(){
init();
ll T,n,k;
scanf("%lld",&T);
while(T--){
scanf("%lld%lld",&n,&k);
printf("%lld\n",solve(n,k));
}
return 0;
}

【BZOJ4591】【Shoi2015】超能粒子炮的更多相关文章

  1. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  3. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  4. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

  5. BZOJ4591——[Shoi2015]超能粒子炮·改

    1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...

  6. bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改

    http://www.lydsy.com/JudgeOnline/problem.php?id=4591 最后的式子合并同类项 #include<cstdio> #include<i ...

  7. bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...

  8. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  9. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  10. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

随机推荐

  1. 【SIKIA计划】_07_Unity3D游戏开发-坦克大战笔记

    [新增分类][AudioClips]音频剪辑[AudioMixers]音频混合器[Editor][Fonts]字体[Materials]材质[Models]模型[Standard Assets] [渲 ...

  2. Python 循环的技巧

    当在字典中循环时,用 items() 方法可将关键字和对应的值同时取出 >>> knights = {'gallahad': 'the pure', 'robin': 'the br ...

  3. Spring Cloud(二):服务注册与发现 Eureka【Finchley 版】

    Spring Cloud(二):服务注册与发现 Eureka[Finchley 版]  发表于 2018-04-15 |  更新于 2018-05-07 |  上一篇主要介绍了相关理论,这一篇开始我们 ...

  4. Hyperledger Fabric Capabilities——超级账本功能汇总

    Hyperledger Fabric是一种模块化的区块链架构,是分布式记账技术(DLT)的一种独特的实现,它提供了可供企业运用的网络,具备安全.可伸缩.加密和可执行等特性.Hyperledger Fa ...

  5. 基于C#的机器学习--目录

    转载请注明出处:https://www.cnblogs.com/wangzhenyao1994/p/10223666.html 文章发表的另一个地址:https://blog.csdn.net/wyz ...

  6. ORACLE中查询被锁定的表,以及如何解锁

    http://www.cnblogs.com/weiyi1314/p/6813325.html

  7. 实验三 Java猜数字游戏开发

    课程:Java实验   班级:201352     姓名:程涵  学号:20135210 成绩:             指导教师:娄佳鹏   实验日期:15.06.03 实验密级:         ...

  8. vs2013 CodeLens

    那东西叫 CodeLens  只有VS2013 旗舰版 (update 2及以上) 才可以用,高级版 专业版都没有.如何打开CodeLens呢?在VS菜单栏 >> 工具 >> ...

  9. Beta Scrum Day 3 — 听说

    听说

  10. 怎样实现SDO服务

    SDO是CANopen协议中最复杂的一部分,带有应答机制,有多种传输方式,并且完整的SDO功能节点需提供1个SDO server和多个SDO client,因此SDO的实现异常困难,协议多种传输方式的 ...