solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

#caffe train --solver=*_solver.prototxt

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

  • Stochastic Gradient Descent (type: "SGD"),
  • AdaDelta (type: "AdaDelta"),
  • Adaptive Gradient (type: "AdaGrad"),
  • Adam (type: "Adam"),
  • Nesterov’s Accelerated Gradient (type: "Nesterov") and
  • RMSprop (type: "RMSProp")

具体的每种方法的介绍,请看本系列的下一篇文章,本文着重介绍solver配置文件的编写。

Solver的流程

1、设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2、通过forward和backward迭代的进行优化来更新参数。

3、定期的评价测试网络。(可设定多少次训练后,进行一次测试)

4、在优化过程中显示模型和solver的状态。

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的solver方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

接下来,我们先来看一下实例:

 net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

接下来,我们对每一行进行详细解释:

net: "examples/mnist/lenet_train_test.prototxt"

设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考前面的博客。

注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

也可用train_net和test_net来对训练模型和测试模型分别设定。例如:

 train_net: "examples/hdf5_classification/logreg_auto_train.prototxt"
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"

接下来第二行:

test_iter: 100

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为1000,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次数据,称之为一个epoch

test_interval: 500

测试间隔。也就是每训练500次,才进行一次测试。

 base_lr: 0.01
lr_policy: "inv"
gamma: 0.0001
power: 0.75

这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

lr_policy可以设置为下面这些值,相应的学习率的计算为:

  • - fixed:    保持base_lr不变.
  • - step:     如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
  • - exp:      返回base_lr * gamma ^ iter, iter为当前迭代次数
  • - inv:       如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
  • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据stepvalue值变化
  • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
  • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

multistep示例:

 base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500

接下来的参数:

 momentum :0.9 

上一次梯度更新的权重,具体可参看下一篇博客。

 type: SGD

优化算法选择。这一行可以省略,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

 weight_decay: 0.0005 

权重衰减项,防止过拟合的一个参数。

 display: 100 

每训练100次,在屏幕上显示一次,如果设置为0,则不显示。

 max_iter: 20000  

最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

 snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"

快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。也可以设置snapshot_format,保存的类型。有两种选择:HDF5和BINARYPROTO,默认为BINARYPROTO。

 solver_mode: CPU

设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此就不一一列举

【转】Caffe初试(九)solver及其设置的更多相关文章

  1. Caffe的Solver参数设置

    Caffe的solver参数设置 http://caffe.berkeleyvision.org/tutorial/solver.html solver是通过协调前向-反向传播的参数更新来控制参数优化 ...

  2. 【转】Caffe初试(十)命令行解析

    caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下 ...

  3. Caffe初试(二)windows下的cafee训练和测试mnist数据集

    一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试 ...

  4. Caffe源码-Solver类

    Solver类简介 Net类中实现了网络的前向/反向计算和参数更新,而Solver类中则是对此进行进一步封装,包含可用于逐次训练网络的Step()函数,和用于求解网络的优化解的Solve()函数,同时 ...

  5. caffe初试(一)happynear的caffe-windows版本的配置及遇到的问题

    之前已经配置过一次caffe环境了: Caffe初试(一)win7_64bit+VS2013+Opencv2.4.10+CUDA6.5配置Caffe环境 但其中也提到,编译时,用到了cuda6.5,但 ...

  6. 【转】Caffe初试(五)视觉层及参数

    本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. ...

  7. Caffe源代码中Solver文件分析

    Caffe源代码(caffe version commit: 09868ac , date: 2015.08.15)中有一些重要的头文件,这里介绍下include/caffe/solver.hpp文件 ...

  8. Caffe初试

    1.基本概念 Caffe是一个比较流行的神经网络框架,它支持C++.Python等语言,容易上手,但是代码貌似不怎么好读,等有空我...;) 2.Windows10下的部署 我把我Windows下的编 ...

  9. 【撸码caffe四】 solver.cpp&&sgd_solver.cpp

    caffe中solver的作用就是交替低啊用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. solver.cpp中的Solver ...

随机推荐

  1. Git bash下中文乱码问题

    Git bash下中文乱码--解决方案 解决办法1: 在git bash下,右键 出现下图,选择options: 选择"Text" 将Character set设置为 UTF-8 ...

  2. mysql 远程连接数据库的二种方法

    http://blog.csdn.net/freecodetor/article/details/5799550 一.连接远程数据库: 1.显示密码 如:MySQL 连接远程数据库(192.168.5 ...

  3. 写了个项目 Web-Rtmp: 使用 WebSocket 在网页上播放 RTMP 直播流

    http://neue.v2ex.com/t/316766 虽说浏览器里用 js 解码'播放'视频的方案已经有几个了... 为什么不再多一个呢... 基本原理: 服务端使用 websockify 中转 ...

  4. python_九九乘法表

    # 九九乘法表 print(" 九九乘法表") for table_x in range(1,10): for table_y in range(1,table_x +1): pr ...

  5. HTML Select 标签选择后触发jQuery事件代码实例

    页面设计原由: 因为很多客户不知道如何来到我们公司,领导想让我在微信公众号上面做一个链接,客户可以直接通过微信公众号打开地图并导航到我们公司的办公地点. 实现起来并不难,但由于公司有很多办事处,所以需 ...

  6. R语言 批量规划求解

    昨天读到一个项目,是关于优化求解的. 约束条件如下: 公司里有很多客户,客户之所以不继续用我们的产品了,是因为他账户余额是负的,所以,为了重新赢回这些客户,公司决定发放优惠券cover掉客户账户的负余 ...

  7. vim的编译安装及其插件YouCompleteMe安装

    相关的环境: win 7 x64 vs2013 community python 2.7.10 AMD64 python 3.5 AMD64 LLVM 3.5 cmake 3.5   YouCompl ...

  8. Linux htop工具使用详解

    一.Htop的使用简介 大家可能对top监控软件比较熟悉,今天我为大家介绍另外一个监控软件Htop,姑且称之为top的增强版,相比top其有着很多自身的优势.如下: 两者相比起来,top比较繁琐 默认 ...

  9. 解决EBS中JAR包冲突的问题

    同事解决的,摘抄上来备用. 问题描述:在OAF里调用ESB的服务报错如下: Error Page   Exception Details.    oracle.apps.fnd.framework.O ...

  10. Longest Substring Without Repeating Characters

    Given a string, find the length of the longest substring without repeating characters. Examples: Giv ...