Hive学习之路 (十二)Hive SQL练习之影评案例
案例说明
现有如此三份数据:
1、users.dat 数据格式为: 2::M::56::16::70072,
共有6040条数据
对应字段为:UserID BigInt, Gender String, Age Int, Occupation String, Zipcode String
对应字段中文解释:用户id,性别,年龄,职业,邮政编码
2、movies.dat 数据格式为: 2::Jumanji (1995)::Adventure|Children's|Fantasy,
共有3883条数据
对应字段为:MovieID BigInt, Title String, Genres String
对应字段中文解释:电影ID,电影名字,电影类型
3、ratings.dat 数据格式为: 1::1193::5::978300760,
共有1000209条数据
对应字段为:UserID BigInt, MovieID BigInt, Rating Double, Timestamped String
对应字段中文解释:用户ID,电影ID,评分,评分时间戳
题目要求
数据要求:
(1)写shell脚本清洗数据。(hive不支持解析多字节的分隔符,也就是说hive只能解析':', 不支持解析'::',所以用普通方式建表来使用是行不通的,要求对数据做一次简单清洗)
(2)使用Hive能解析的方式进行
Hive要求:
(1)正确建表,导入数据(三张表,三份数据),并验证是否正确
(2)求被评分次数最多的10部电影,并给出评分次数(电影名,评分次数)
(3)分别求男性,女性当中评分最高的10部电影(性别,电影名,影评分)
(4)求movieid = 2116这部电影各年龄段(因为年龄就只有7个,就按这个7个分就好了)的平均影评(年龄段,影评分)
(5)求最喜欢看电影(影评次数最多)的那位女性评最高分的10部电影的平均影评分(观影者,电影名,影评分)
(6)求好片(评分>=4.0)最多的那个年份的最好看的10部电影
(7)求1997年上映的电影中,评分最高的10部Comedy类电影
(8)该影评库中各种类型电影中评价最高的5部电影(类型,电影名,平均影评分)
(9)各年评分最高的电影类型(年份,类型,影评分)
(10)每个地区最高评分的电影名,把结果存入HDFS(地区,电影名,影评分)
数据下载
https://files.cnblogs.com/files/qingyunzong/hive%E5%BD%B1%E8%AF%84%E6%A1%88%E4%BE%8B.zip
解析
之前已经使用MapReduce程序将3张表格进行合并,所以只需要将合并之后的表格导入对应的表中进行查询即可。
1、正确建表,导入数据(三张表,三份数据),并验证是否正确
(1)分析需求
需要创建一个数据库movie,在movie数据库中创建3张表,t_user,t_movie,t_rating
t_user:userid bigint,sex string,age int,occupation string,zipcode string
t_movie:movieid bigint,moviename string,movietype string
t_rating:userid bigint,movieid bigint,rate double,times string
原始数据是以::进行切分的,所以需要使用能解析多字节分隔符的Serde即可
使用RegexSerde
需要两个参数:
input.regex = "(.*)::(.*)::(.*)"
output.format.string = "%1$s %2$s %3$s"
(2)创建数据库
drop database if exists movie;
create database if not exists movie;
use movie;
(3)创建t_user表
create table t_user(
userid bigint,
sex string,
age int,
occupation string,
zipcode string)
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe'
with serdeproperties('input.regex'='(.*)::(.*)::(.*)::(.*)::(.*)','output.format.string'='%1$s %2$s %3$s %4$s %5$s')
stored as textfile;
(4)创建t_movie表
use movie;
create table t_movie(
movieid bigint,
moviename string,
movietype string)
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe'
with serdeproperties('input.regex'='(.*)::(.*)::(.*)','output.format.string'='%1$s %2$s %3$s')
stored as textfile;
(5)创建t_rating表
use movie;
create table t_rating(
userid bigint,
movieid bigint,
rate double,
times string)
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe'
with serdeproperties('input.regex'='(.*)::(.*)::(.*)::(.*)','output.format.string'='%1$s %2$s %3$s %4$s')
stored as textfile;
(6)导入数据
0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/movie/users.dat" into table t_user;
No rows affected (0.928 seconds)
0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/movie/movies.dat" into table t_movie;
No rows affected (0.538 seconds)
0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/movie/ratings.dat" into table t_rating;
No rows affected (0.963 seconds)
0: jdbc:hive2://hadoop3:10000>
(7)验证
select t.* from t_user t;
select t.* from t_movie t;
select t.* from t_rating t;
2、求被评分次数最多的10部电影,并给出评分次数(电影名,评分次数)
(1)思路分析:
1、需求字段:电影名 t_movie.moviename
评分次数 t_rating.rate count()
2、核心SQL:按照电影名进行分组统计,求出每部电影的评分次数并按照评分次数降序排序
(2)完整SQL:
create table answer2 as
select a.moviename as moviename,count(a.moviename) as total
from t_movie a join t_rating b on a.movieid=b.movieid
group by a.moviename
order by total desc
limit 10;
select * from answer2;
3、分别求男性,女性当中评分最高的10部电影(性别,电影名,影评分)
(1)分析思路:
1、需求字段:性别 t_user.sex
电影名 t_movie.moviename
影评分 t_rating.rate
2、核心SQL:三表联合查询,按照性别过滤条件,电影名作为分组条件,影评分作为排序条件进行查询
(2)完整SQL:
女性当中评分最高的10部电影(性别,电影名,影评分)评论次数大于等于50次
create table answer3_F as
select "F" as sex, c.moviename as name, avg(a.rate) as avgrate, count(c.moviename) as total
from t_rating a
join t_user b on a.userid=b.userid
join t_movie c on a.movieid=c.movieid
where b.sex="F"
group by c.moviename
having total >= 50
order by avgrate desc
limit 10;
select * from answer3_F;
男性当中评分最高的10部电影(性别,电影名,影评分)评论次数大于等于50次
create table answer3_M as
select "M" as sex, c.moviename as name, avg(a.rate) as avgrate, count(c.moviename) as total
from t_rating a
join t_user b on a.userid=b.userid
join t_movie c on a.movieid=c.movieid
where b.sex="M"
group by c.moviename
having total >= 50
order by avgrate desc
limit 10;
select * from answer3_M;
4、求movieid = 2116这部电影各年龄段(因为年龄就只有7个,就按这个7个分就好了)的平均影评(年龄段,影评分)
(1)分析思路:
1、需求字段:年龄段 t_user.age
影评分 t_rating.rate
2、核心SQL:t_user和t_rating表进行联合查询,用movieid=2116作为过滤条件,用年龄段作为分组条件
(2)完整SQL:
create table answer4 as
select a.age as age, avg(b.rate) as avgrate
from t_user a join t_rating b on a.userid=b.userid
where b.movieid=2116
group by a.age;
select * from answer4;
5、求最喜欢看电影(影评次数最多)的那位女性评最高分的10部电影的平均影评分(观影者,电影名,影评分)
(1)分析思路:
1、需求字段:观影者 t_rating.userid
电影名 t_movie.moviename
影评分 t_rating.rate
2、核心SQL:
A. 需要先求出最喜欢看电影的那位女性
需要查询的字段:性别:t_user.sex
观影次数:count(t_rating.userid)
B. 根据A中求出的女性userid作为where过滤条件,以看过的电影的影评分rate作为排序条件进行排序,求出评分最高的10部电影
需要查询的字段:电影的ID:t_rating.movieid
C. 求出B中10部电影的平均影评分
需要查询的字段:电影的ID:answer5_B.movieid
影评分:t_rating.rate
(2)完整SQL:
A. 需要先求出最喜欢看电影的那位女性
select a.userid, count(a.userid) as total
from t_rating a join t_user b on a.userid = b.userid
where b.sex="F"
group by a.userid
order by total desc
limit 1;
B. 根据A中求出的女性userid作为where过滤条件,以看过的电影的影评分rate作为排序条件进行排序,求出评分最高的10部电影
create table answer5_B as
select a.movieid as movieid, a.rate as rate
from t_rating a
where a.userid=1150
order by rate desc
limit 10;
select * from answer5_B;
C. 求出B中10部电影的平均影评分
create table answer5_C as
select b.movieid as movieid, c.moviename as moviename, avg(b.rate) as avgrate
from answer5_B a
join t_rating b on a.movieid=b.movieid
join t_movie c on b.movieid=c.movieid
group by b.movieid,c.moviename;
select * from answer5_C;
6、求好片(评分>=4.0)最多的那个年份的最好看的10部电影
(1)分析思路:
1、需求字段:电影id t_rating.movieid
电影名 t_movie.moviename(包含年份)
影评分 t_rating.rate
上映年份 xxx.years
2、核心SQL:
A. 需要将t_rating和t_movie表进行联合查询,将电影名当中的上映年份截取出来,保存到临时表answer6_A中
需要查询的字段:电影id t_rating.movieid
电影名 t_movie.moviename(包含年份)
影评分 t_rating.rate
B. 从answer6_A按照年份进行分组条件,按照评分>=4.0作为where过滤条件,按照count(years)作为排序条件进行查询
需要查询的字段:电影的ID:answer6_A.years
C. 从answer6_A按照years=1998作为where过滤条件,按照评分作为排序条件进行查询
需要查询的字段:电影的ID:answer6_A.moviename
影评分:answer6_A.avgrate
(2)完整SQL:
A. 需要将t_rating和t_movie表进行联合查询,将电影名当中的上映年份截取出来
create table answer6_A as
select a.movieid as movieid, a.moviename as moviename, substr(a.moviename,-5,4) as years, avg(b.rate) as avgrate
from t_movie a join t_rating b on a.movieid=b.movieid
group by a.movieid, a.moviename;
select * from answer6_A;
B. 从answer6_A按照年份进行分组条件,按照评分>=4.0作为where过滤条件,按照count(years)作为排序条件进行查询
select years, count(years) as total
from answer6_A a
where avgrate >= 4.0
group by years
order by total desc
limit 1;
C. 从answer6_A按照years=1998作为where过滤条件,按照评分作为排序条件进行查询
create table answer6_C as
select a.moviename as name, a.avgrate as rate
from answer6_A a
where a.years=1998
order by rate desc
limit 10;
select * from answer6_C;
7、求1997年上映的电影中,评分最高的10部Comedy类电影
(1)分析思路:
1、需求字段:电影id t_rating.movieid
电影名 t_movie.moviename(包含年份)
影评分 t_rating.rate
上映年份 xxx.years(最终查询结果可不显示)
电影类型 xxx.type(最终查询结果可不显示)
2、核心SQL:
A. 需要电影类型,所有可以将第六步中求出answer6_A表和t_movie表进行联合查询
需要查询的字段:电影id answer6_A.movieid
电影名 answer6_A.moviename
影评分 answer6_A.rate
电影类型 t_movie.movietype
上映年份 answer6_A.years
B. 从answer7_A按照电影类型中是否包含Comedy和按上映年份作为where过滤条件,按照评分作为排序条件进行查询,将结果保存到answer7_B中
需要查询的字段:电影的ID:answer7_A.id
电影的名称:answer7_A.name
电影的评分:answer7_A.rate
(2)完整SQL:
A. 需要电影类型,所有可以将第六步中求出answer6_A表和t_movie表进行联合查询
create table answer7_A as
select b.movieid as id, b.moviename as name, b.years as years, b.avgrate as rate, a.movietype as type
from t_movie a join answer6_A b on a.movieid=b.movieid;
select t.* from answer7_A t;
B. 从answer7_A按照电影类型中是否包含Comedy和按照评分>=4.0作为where过滤条件,按照评分作为排序条件进行查询,将结果保存到answer7_B中
create table answer7_B as
select t.id as id, t.name as name, t.rate as rate
from answer7_A t
where t.years=1997 and instr(lcase(t.type),'comedy') >0
order by rate desc
limit 10;
select * from answer7_B;
8、该影评库中各种类型电影中评价最高的5部电影(类型,电影名,平均影评分)
(1)分析思路:
1、需求字段:电影id movieid
电影名 moviename
影评分 rate(排序条件)
电影类型 type(分组条件)
2、核心SQL:
A. 需要电影类型,所有需要将answer7_A中的type字段进行裂变,将结果保存到answer8_A中
需要查询的字段:电影id answer7_A.id
电影名 answer7_A.name(包含年份)
上映年份 answer7_A.years
影评分 answer7_A.rate
电影类型 answer7_A.movietype
B. 求TopN,按照type分组,需要添加一列来记录每组的顺序,将结果保存到answer8_B中
row_number() :用来生成 num字段的值
distribute by movietype :按照type进行分组
sort by avgrate desc :每组数据按照rate排降序
num:新列, 值就是每一条记录在每一组中按照排序规则计算出来的排序值
C. 从answer8_B中取出num列序号<=5的
(2)完整SQL:
A. 需要电影类型,所有需要将answer7_A中的type字段进行裂变,将结果保存到answer8_A中
create table answer8_A as
select a.id as id, a.name as name, a.years as years, a.rate as rate, tv.type as type
from answer7_A a
lateral view explode(split(a.type,"\\|")) tv as type;
select * from answer8_A;
B. 求TopN,按照type分组,需要添加一列来记录每组的顺序,将结果保存到answer8_B中
create table answer8_B as
select id,name,years,rate,type,row_number() over(distribute by type sort by rate desc ) as num
from answer8_A;
select * from answer8_B;
C. 从answer8_B中取出num列序号<=5的
select a.* from answer8_B a where a.num <= 5;
9、各年评分最高的电影类型(年份,类型,影评分)
(1)分析思路:
1、需求字段:电影id movieid
电影名 moviename
影评分 rate(排序条件)
电影类型 type(分组条件)
上映年份 years(分组条件)
2、核心SQL:
A. 需要按照电影类型和上映年份进行分组,按照影评分进行排序,将结果保存到answer9_A中
需要查询的字段:
上映年份 answer7_A.years
影评分 answer7_A.rate
电影类型 answer7_A.movietype
B. 求TopN,按照years分组,需要添加一列来记录每组的顺序,将结果保存到answer9_B中
C. 按照num=1作为where过滤条件取出结果数据
(2)完整SQL:
A. 需要按照电影类型和上映年份进行分组,按照影评分进行排序,将结果保存到answer9_A中
create table answer9_A as
select a.years as years, a.type as type, avg(a.rate) as rate
from answer8_A a
group by a.years,a.type
order by rate desc;
select * from answer9_A;
B. 求TopN,按照years分组,需要添加一列来记录每组的顺序,将结果保存到answer9_B中
create table answer9_B as
select years,type,rate,row_number() over (distribute by years sort by rate) as num
from answer9_A;
select * from answer9_B;
C. 按照num=1作为where过滤条件取出结果数据
select * from answer9_B where num=1;
10、每个地区最高评分的电影名,把结果存入HDFS(地区,电影名,影评分)
(1)分析思路:
1、需求字段:电影id t_movie.movieid
电影名 t_movie.moviename
影评分 t_rating.rate(排序条件)
地区 t_user.zipcode(分组条件)
2、核心SQL:
A. 需要把三张表进行联合查询,取出电影id、电影名称、影评分、地区,将结果保存到answer10_A表中
需要查询的字段:电影id t_movie.movieid
电影名 t_movie.moviename
影评分 t_rating.rate(排序条件)
地区 t_user.zipcode(分组条件)
B. 求TopN,按照地区分组,按照平均排序,添加一列num用来记录地区排名,将结果保存到answer10_B表中
C. 按照num=1作为where过滤条件取出结果数据
(2)完整SQL:
A. 需要把三张表进行联合查询,取出电影id、电影名称、影评分、地区,将结果保存到answer10_A表中
create table answer10_A as
select c.movieid, c.moviename, avg(b.rate) as avgrate, a.zipcode
from t_user a
join t_rating b on a.userid=b.userid
join t_movie c on b.movieid=c.movieid
group by a.zipcode,c.movieid, c.moviename;
select t.* from answer10_A t;
B. 求TopN,按照地区分组,按照平均排序,添加一列num用来记录地区排名,将结果保存到answer10_B表中
create table answer10_B as
select movieid,moviename,avgrate,zipcode, row_number() over (distribute by zipcode sort by avgrate) as num
from answer10_A;
select t.* from answer10_B t;
C. 按照num=1作为where过滤条件取出结果数据并保存到HDFS上
insert overwrite directory "/movie/answer10/" select t.* from answer10_B t where t.num=1;
Hive学习之路 (十二)Hive SQL练习之影评案例的更多相关文章
- Hive学习之路 (二十一)Hive 优化策略
一.Hadoop 框架计算特性 1.数据量大不是问题,数据倾斜是个问题 2.jobs 数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次 汇总,产生十几个 jobs,耗时很长.原 ...
- Hive学习之路 (二)Hive安装
Hive的下载 下载地址http://mirrors.hust.edu.cn/apache/ 选择合适的Hive版本进行下载,进到stable-2文件夹可以看到稳定的2.x的版本是2.3.3 Hive ...
- Hive学习之路 (二十)Hive 执行过程实例分析
一.Hive 执行过程概述 1.概述 (1) Hive 将 HQL 转换成一组操作符(Operator),比如 GroupByOperator, JoinOperator 等 (2)操作符 Opera ...
- Hive学习之路(二)—— Linux环境下Hive的安装部署
一.安装Hive 1.1 下载并解压 下载所需版本的Hive,这里我下载版本为cdh5.15.2.下载地址:http://archive.cloudera.com/cdh5/cdh/5/ # 下载后进 ...
- zigbee学习之路(十二):zigbee协议原理介绍
一.前言 从今天开始,我们要正式开始进行zigbee相关的通信实验了,我所使用的协议栈是ZStack 是TI ZStack-CC2530-2.3.0-1.4.0版本,大家也可以从TI的官网上直接下载T ...
- Object-c学习之路十二(OC的copy)
oc中的拷贝分为:copy(浅拷贝)和mutablecopy(深拷贝). 浅拷贝也为指针拷贝,拷贝后原来的对象计数器会+1: 深拷贝为对象拷贝,原来的对象计数器不变. 注意:自定义对象拷贝时要实现NS ...
- Java学习之路(十二):IO流<二>
字符流 字符流是可以直接读写字符的IO流 使用字符流从文件中读取字符的时候,需要先读取到字节数据,让后在转换为字符 使用字符流向文件中写入字符时,需要把字符转为字节在写入文件 Reader和Write ...
- 嵌入式Linux驱动学习之路(十二)按键驱动-poll机制
实现的功能是在读取按键信息的时候,如果没有产生按键,则程序休眠在read函数中,利用poll机制,可以在没有退出的情况下让程序自动退出. 下面的程序就是在读取按键信息的时候,如果5000ms内没有按键 ...
- IOS学习之路十二(UITableView下拉刷新页面)
今天做了一个下拉刷新的demo,主要用到了实现的开源框架是:https://github.com/enormego/EGOTableViewPullRefresh 运行结果如下: 实现很简单下载源代码 ...
- Java学习之路(十二):IO流<三>
复习:序列流 序列流可以把多个字节输入整合成一个,从序列流中读取到数据时,将从被整合的第一个流开始读取,读完这个后,然后开始读取第二个流,依次向后推. 详细见上一篇文章 ByteArrayOutput ...
随机推荐
- mysql根据经纬度求两地距离
#1.两点距离(1.4142135623730951) ,),point(,)); select st_distance(point (120.10591, 30.30163),point(120.1 ...
- win Apache服务消失或无法启动
在bin目录中找到httpd.exe命令,如下图所示.启动cmd,即命令行,使用管理员身份运行,cd至该bin目录下. 使用cmd执行如下命令进行服务的安装:httpd.exe -k instal ...
- Maven配置私服仓库
首先就是,最基本的打开maven的配置文件,上面是我自己的习惯,多留一个以备不坏 打开setting配置文件,来修改路径(本人不习惯将所有软件放在C盘,一般都是单独存放盘) 接下来就是公司给你的账户和 ...
- Ubuntu Grub 配置跟新
自从上了Grub2,就开始装逼了,配置不如以前方便了. 需要修改一些基本的配置如菜单超时之类的可以修改/etc/default/grub文件,然后使用update-grub来更新/boot/grub/ ...
- mysqli返回受影响行数
参考链接:http://php.net/manual/en/mysqli.affected-rows.php /* update rows */ $mysqli->query("UPD ...
- input文字垂直居中和按钮对齐问题,兼容IE8
1.盒子模型问题:请CSS重置 2.按钮不对齐:请浮动或者vertical-align:middle;然后计算宽高,使其对齐 : 3.IE8文本不居中:line-height属性 注意:IE8 ...
- Visualizing CNN Layer in Keras
CNN 权重可视化 How convolutional neural networks see the world An exploration of convnet filters with Ker ...
- mvp 在 flutter 中的应用
在 Android 应用程序开发过程中,我们经常会用到一些所谓的架构方法,如:mvp,mvvm,clean等.之所以这些方法会被推崇是因为他们可以大大的解耦我们的代码的功能模块,让我们的代码在项目中后 ...
- U-Push 3.1.5SDK 集成的一些坑
1.老是mPushAgent.register中onFailure获取不到deviceToken so文件配置有误,需重新配置: PushSDK .x默认只提供armeabi和x86两种so文件夹,若 ...
- winform listbox 使用DrawMode使用OwnerDrawVarialbe或OwnerDrawFixed无水平滚动条
因为需要使用DrawMode自行DrawItem,所以需要将DrawMode设置为OwnerDrawVarialbe或OwnerDrawFixed模式,代码如下: private void listB ...