A/B

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2390    Accepted Submission(s): 1731

Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 
Output
对应每组数据输出(A/B)%9973。
 
Sample Input
2
1000 53
87 123456789
 
Sample Output
7922
6060
 
Author
xhd
 
  对于拓欧我用的一点也不熟练,特别是限制解必须为正数时,而本题规定了b,9973互质,直接取模至正数,还变简单了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long qword;
qword ext_gcd(qword a,qword b,qword &x,qword &y)
{
if (a%b==)
{
//a*x+b*y==b
x=;y=;
return y;
}
qword ret=ext_gcd(b,a%b,x,y);
qword tx=x,ty=y;
x=ty;
y=tx-a/b*ty;
return ret;
}
int main()
{
//freopen("input.txt","r",stdin);
//A=9973*x+n
//(9973*x+n)=y*B
//9973*x-B*y==-n
qword n,a,b,x,y,yy,xx;
int nn;
scanf("%d",&nn);
qword g;
while (nn--)
{
scanf("%I64d%I64d",&n,&b);
g=ext_gcd(,b,x,y);
x*=-n;y*=n;
// cout<<9973*x-b*y<<endl;
yy=(y%+)%;
xx=x-(y-yy)/*b;
// cout<<9973*xx-b*yy<<endl;
cout<<yy<<endl;
}
}

hdu 1576 A/B 拓展欧几里得算法的更多相关文章

  1. POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)

    题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...

  2. POJ 1601 拓展欧几里得算法

    学习链接:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 先来学习一下什么是欧几里得算法: 欧几里得原理是:两个整数 ...

  3. 数论入门——斐蜀定理与拓展欧几里得算法

    斐蜀定理 内容 斐蜀定理又叫贝祖定理,它的内容是这样的: 若$a,bin N$,那么对于任意x,y,方程$ax+by=gcd(a,b)*k(kin N)$一定有解,且一定有一组解使$ax+by=gcd ...

  4. 欧几里得 &amp; 拓展欧几里得算法 解说 (Euclid &amp; Extend- Euclid Algorithm)

    欧几里得& 拓展欧几里得(Euclid & Extend-Euclid) 欧几里得算法(Euclid) 背景: 欧几里德算法又称辗转相除法.用于计算两个正整数a.b的最大公约数. -- ...

  5. ACM数论-欧几里得与拓展欧几里得算法

    欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). ...

  6. 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)

    欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...

  7. RSA算法的C++string实现(模幂算法和欧几里得算法的使用)后附思路

    void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 st ...

  8. 欧几里得(Euclid)与拓展的欧几里得算法

    欧几里得(Euclid)与拓展的欧几里得算法 欧几里得(Euclid)与拓展的欧几里得算法 欧几里得算法 原理 实现 拓展的欧几里得算法 原理 递归求解 迭代求解 欧几里得算法 原理 欧几里得算法是一 ...

  9. hdu 1576 A/B

    原题链接:hdu 1576 A/B 同样是用扩展的欧几里得算法.A = 9973k+n = xB,从而转化为:xB-9973k=n求解x即可. 具体扩展欧几里得算法请参考:hdu 2669 Roman ...

随机推荐

  1. classpath多个包添加

    转的: 把某目录下的所有子目录和子目录下面的下层和更下层目录也添加到CLASSPATH里面,更具需求写了两句,发上来分享,备忘. 在Linux下可以通过这样的方法把/opt/.../lib目录下的所有 ...

  2. DS_Store

    .DS_Store (英文全称 Desktop Services Store)[1] 是一种由苹果公司的Mac OS X操作系统所创造的隐藏文件,目的在于存贮文件夹的自定义属性,例如文件们的图标位置或 ...

  3. Android Studio使用SVN,与eclipse共同开发。

    Android Studio(下称AS)开发工具目前已经迅速在世界普遍使用起来,而在很多一部分公司内部,仍然有部分老员工坚持使用eclipse + SVN,而不改用AS,这使得想使用AS的小伙伴们都深 ...

  4. PHP 数组的值插入

    曾今写过一个坑货的数组方法 function array_insert($myarray,$value,$position=0) {    $fore=($position==0)?array():a ...

  5. C#基础加强

    1.代码规范 -命名规范:定义的变量或者方法名要有意义. 1.骆驼命名 :第一个单词首字母小写,之后的单词首字母大写 userName.userPassword.realName…(普通变量(局部变量 ...

  6. RelativeLayout相对布局 安卓布局技巧

    http://blog.csdn.net/nieweiking/article/details/38417317 RelativeLayout相对布局 相对布局 RelativeLayout 允许子元 ...

  7. 自动化构建jenkins配置

    1.安装jdk7+tomcat7 2.下载msi安装文件(我是win7上安装,下载地址 http://Jenkins-ci.org/),文件安装路径选择\tomcat\webapps. 3.安装成功之 ...

  8. Android混淆那些事儿

    博客: 安卓之家 微博: 追风917 CSDN: 蒋朋的家 简书: 追风917 博客园:追风917 # Android混淆 Android混淆是Android开发者经常使用的一种用于代码防止被反编译的 ...

  9. CI 笔记 datagrid的调用,不支持多页面多次调用js

    在导航列表中,调用datagrid时,如果用js加载datagrid时,不知为何,报“404错误”找不到网页, 用datagrid时,用网页的形式调用,则没有问题. ----------------- ...

  10. 2014-11-9------- 设有一数据库,包括四个表:学生表(Student)、课程表(Course)、成绩表(Score)以及教师信息表(Teacher)。

    一.            设有一数据库,包括四个表:学生表(Student).课程表(Course).成绩表(Score)以及教师信息表(Teacher).四个表的结构分别如表1-1的表(一)~表( ...