题目:

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

链接: http://leetcode.com/problems/palindrome-partitioning-ii/

题解:

一上来思路是在Palindrome Partition I的基础上,找到所有的Partition,然后再查找一遍最短的解,这样做会超时。 接下来又想可不可以使用suffix array / suffix tree,或者Manancher。最后想来想去老老实实看discuss去。大部分还是使用dp - 初始化,找到转移方程,然后计算。 主要参考了小莹子和水中的鱼大神。

初始定义一个一维数组minCuts,用来表示s.substring(0, i + 1)时的最小cut数。

再定义一个二维布尔数组isPalindrome,用来表示 s.substring(j, i)是否是palindrome。

核心算法是,假如isPalindrome[j][i]是palindrome,说明 j - 1至i + 1只需要1个cut, 因此对每一个i, minCuts[i]可以进行更新 - 比较现有 minCuts[i] 与 minCuts[j - 1] + 1。 这里也是一个一维的dp。

而另外一部分,isPalindrome[j][i]是palindrome的条件是 isPalindrome[j + 1,i - 1]为true而且s.charAt(j) == s.charAt(i)。举个例子,字符串"abba", j = s.charAt(0), i = s.charAt(3), 则"abba"为true的条件是"bb"为palindrome而且'a' == 'a'。 其中 j + 1 = s.charAt(1), i - 1 = s.charAt(2)。即 j + 1, i - 1代表当前字符串内部1个单位的子串。

特殊情况是 i - j <= 1时,isPalindrome[j,i]也为true。因为 i - j = 0时,i = j, 此时s.substring(j,i)是一个字符,所以为true。 而i - j = 1时,类似于“bb”, 此时是偶数Palindrome,所以值也为true。 (其实情况可以扩大到i - j <= 2, 这时 s.charAt(i) == s.charAt(j),类似于"aba",可以忽略中间的字符,也是一个Palindrome,不过对结果没有影响, 因为这种情况会被 i - j = 0 包括)

对每个i来说, 一开始可以初始化minCuts[i] = Integer.MAX_VALUE,或者 minCuts[i] = i。 每次判断到isPalindrome[j][i]为真时,尝试更新 minCuts[i]。 这里的特殊情况是,当j = 0时, 说明 0 至 i + 1为palindrome,此时不需要cut,所以设置 minCuts[i] = 0。

Time Complexity - O(n2), Space Complexity - O(n2)。

public class Solution {
public int minCut(String s) {
int len = s.length();
int[] minCuts = new int[len]; //minCuts[i] is min cut for s.substring(0, i + 1)
boolean[][] isPalindrome = new boolean[len][len]; for (int i = 0; i < len; i++) {
minCuts[i] = Integer.MAX_VALUE; //set initial value for minCuts[i] for (int j = 0; j <= i; j++) {
if (s.charAt(i) == s.charAt(j)) { //if s.substring(j, i) is Palindrome
if (i - j <= 1 || isPalindrome[j + 1][i - 1]) {
isPalindrome[j][i] = true;
if (j == 0)
minCuts[i] = 0; //if(s[0....i] is palindrome), no cut needed
else {
minCuts[i] = Math.min(minCuts[i], minCuts[j - 1] + 1); //1-D dp
}
}
}
}
}
return minCuts[len - 1];
}
}

Discussion里还有更好的写法,只用O(n)的空间复杂度,第二遍刷时要好好研究。

题外话: 周6去爬山,break neck trail, 在熊山附近。 最近缺乏运动,体力不是很好,在山顶吹了会小风就有点感冒了,现在头还很痛。周日去找赵师傅,把装修定金取了回来。连续两天奔波很累。这个周末也没有学习,倒是把<三体>三部曲全看完了,写得确实好。 接下来要好好休息,好好刷题。

Reference:

http://www.cnblogs.com/springfor/p/3891896.html

http://www.programcreek.com/2014/04/leetcode-palindrome-partitioning-ii-java/

http://fisherlei.blogspot.com/2013/03/leetcode-palindrome-partitioning-ii.html

http://blog.csdn.net/ljphhj/article/details/22573983

http://blog.csdn.net/yuanhisn/article/details/46117525

https://leetcode.com/discuss/9476/solution-does-not-need-table-palindrome-right-uses-only-space

http://blog.csdn.net/ljphhj/article/details/22799189

https://leetcode.com/discuss/6691/my-dp-solution-explanation-and-code

https://leetcode.com/discuss/33077/solved-shortest-path-algorithm-clear-and-straightforward

https://leetcode.com/discuss/47140/two-versions-given-one-28ms-one-manancher-like-algorithm-10

132. Palindrome Partitioning II的更多相关文章

  1. leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II

    131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...

  2. 【LeetCode】132. Palindrome Partitioning II

    Palindrome Partitioning II  Given a string s, partition s such that every substring of the partition ...

  3. leetcode 132. Palindrome Partitioning II ----- java

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  4. 132. Palindrome Partitioning II (String; DP)

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  5. Java for LeetCode 132 Palindrome Partitioning II

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  6. Leetcode 132. Palindrome Partitioning II

    求次数的问题一般用DP class Solution(object): def minCut(self, s): """ :type s: str :rtype: int ...

  7. 动态规划之132 Palindrome Partitioning II

    题目链接:https://leetcode-cn.com/problems/palindrome-partitioning-ii/description/ 参考链接:https://blog.csdn ...

  8. 【leetcode dp】132. Palindrome Partitioning II

    https://leetcode.com/problems/palindrome-partitioning-ii/description/ [题意] 给定一个字符串,求最少切割多少下,使得切割后的每个 ...

  9. 132 Palindrome Partitioning II 分割回文串 II

    给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串.返回 s 符合要求的的最少分割次数.例如,给出 s = "aab",返回 1 因为进行一次分割可以将字符串 s 分 ...

随机推荐

  1. VS2012无法创建项目:未找到与约束……匹配的导出

    故障情况:7月10号后用VS2012创建项目时,弹出如下对话框,无法创建新项目: 而后经网络搜索确定是7月10号更新了系统补丁后造成的 解决方案: 1.卸载这两个补丁后重启电脑: 2.到http:// ...

  2. mysqld-nt: Out of memory (Needed 1677720 bytes)解决方法

    http://www.jb51.net/article/58726.htm 今天发现网站有点慢,发现mysql日志中提示mysqld-nt: Out of memory (Needed 1677720 ...

  3. 2016/01/19 javascript学习笔记-name属性

    1. name属性只在少数html元素中有效:包括表单.表单元素.<iframe>和<img>元素. 基于name属性的值选取html元素,可以使用document对象的get ...

  4. 04_HttpClient发送Https请求

    [实例 带Cookie访问HTTPS类型的 建信基金 的某一页面)] /** * 创建一个可以访问Https类型URL的工具类,返回一个CloseableHttpClient实例 */ public ...

  5. 关于$.fn

    今天看一篇文章,里面的一段代码出现了$.fn,第一次见到这样的写法,于是跑去问度娘...代码如下: $.fn.scrollUnique = function() { return $(this).ea ...

  6. java集合——进度1

    集合类的由来:    对象用于封装特有数据,对象多了需要存储,如果对象的个数不确定.    就使用集合容器进行存储.    集合特点:1,用于存储对象的容器.2,集合的长度是可变的.3,集合中不可以存 ...

  7. json 包含字段及函数的写法

    在javascript中写类有多种方式: 1.function()中嵌套function; 2.prototype的方式 ,3.json的方式,如下: <script language=&quo ...

  8. javascript获取url中对应参数的方法

    利用正则表达式和location.search方法,可以简便的获取到对应的参数:   function getQueryString(name) {var reg = new RegExp(" ...

  9. Python的设计模式学习

    1.工厂模式 #encoding=utf-8 __author__ = 'kevinlu1010@qq.com' class ADD(): def getResult(self,*args): ret ...

  10. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...