原文网址   http://blog.csdn.net/liwen_7/article/details/7646451

错排问题 就是一种递推式,不过它比较著名且常用,所以要熟记!

方法一: 
n各有序的元素应有n!种不同的排列。如若一个排列式的所有的元素都不在原来的位置上,则称这个排列为错排。任给一个n,求出1,2,……,n的错排个数Dn共有多少个。
递归关系式为:D(n)=(n-1)(D(n-1)+D(n-2))
D(1)=0,D(2)=1
可以得到:
错排公式为 f(n) = n![1-1/1!+1/2!-1/3!+……+(-1)^n*1/n!] 
其中,n!=1*2*3*.....*n,
特别地,有0!=0,1!=1.

解释: 
n 个不同元素的一个错排可由下述两个步骤完成: 
第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 种方法。 
第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若1号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 号元素的不同排法将导致两类不同的情况发生:
1、 k 号元素排在第1个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;
2、 k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 个位置(也就是说本来准备放到k位置为元素,可以放到1位置中),于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 种方法。据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。 
根据乘法原理, n 个不同元素的错排种数 
f(n) = (n-1)[f(n-2)+f(n-1)] (n>2) 。

证毕。

不容易系列之一

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 16617    Accepted Submission(s):
6919

Problem Description
大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?

Input
输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。
Output
对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
Sample Input
2
3
Sample Output
1
2

AC代码

#include<stdio.h>
#include<string.h>
int main()
{
int n,m,j,i,s,sum;
long long fn[22];
fn[1]=0;
fn[2]=1;
while(scanf("%d",&n)!=EOF)
{
for(i=3;i<=n;i++)
{
fn[i]=(i-1)*(fn[i-2]+fn[i-1]);
}
printf("%lld\n",fn[n]);
}
return 0;
}

  

hdoj 1465 不容易系列之一的更多相关文章

  1. LCIS HDOJ 4512 吉哥系列故事——完美队形I

    题目传送门 题意:中文题面 分析:LCIS应用:设置b[]为a[]的反转,然后LCIS,若相等的是自己本身,则+1, 否则+2 代码: #include <cstdio> #include ...

  2. D-hdu 1465 不容易系列之一(递推)

    hdu 1465 不容易系列之一(错排) 不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  3. HDOJ(HDU) 1465 不容易系列之一(错排)

    Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就 ...

  4. hdu 1465:不容易系列之一(递推入门题)

    不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. hdoj 2045 不容易系列之(3)—— LELE的RPG难题

    不容易系列之(3)—— LELE的RPG难题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/O ...

  6. hdu 1465 不容易系列之一(错排模板)

    不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  7. HDU——1465不容易系列之一(错排公式)

    不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  8. HDOJ 4508 湫湫系列故事——减肥记I (完全背包带优化)

    完全背包的模版题.. 加了一个小优化  n^2的写法 O(V+N)在本题中复杂度较高 不采纳 完全背包问题有一个很简单有效的优化,是这样的:若两件物品i.j满足c[i]<=c[j]且w[i]&g ...

  9. HDU 1465 不容易系列之一(错排,递归)

    简而言之,就是把n个信封全部装错的可能数.(中问题,具体看题目) //当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示, //那么M(n-1)就表示n-1个编号元素放在 ...

随机推荐

  1. nodejs child process

    //Create child processvar thread = require('child_process'); var msg = thread.fork(__dirname + '/chi ...

  2. 正则表达式的秘籍-b

    一. 正则表达式和其他方法的比较 1.我们一般将谓词和正则表达式配合使用,这是最常用的方法. - (BOOL)validateNumber:(NSString *) textString {     ...

  3. 关于 js 2个数组取差集怎么取

    关于 js 2个数组取差集怎么取? 例如求var arr1 = [1]; var arr2 = [1,2];的差集方法一: Array.prototype.diff = function(a) { r ...

  4. responsive web design

    http://d.alistapart.com/responsive-web-design/ex/ex-site-flexible.html http://alistapart.com/article ...

  5. Android 多渠道打包原理和使用

    每次中午吃饭总会和技术同学聊天.当做 iOS 开发的做安卓开发的人员在一起的时候,他们中间又多了一个话题:iOS 开发难还是安卓开发难. 这个时候做安卓开发的同学最激动说安卓开发要自己画界面.机型复杂 ...

  6. UVA 10896 Sending Email

    这个题目真是伤透脑筋了,一直RE,连着改了好几个版本,又是spfa,又是单调队列dijkstra+单调队列,总是不过,后来发现M开小了,双向边应该开m的两倍,悲剧啊!!!以后不管怎样,数组一定要尽量开 ...

  7. CAN

    CAN Introduction Features Network Topology(CANbus網路架構) MESSAGE TRANSFER(CAN通訊的資料格式) 1.DATA FRAME(資料通 ...

  8. HTML5文件拖拽

    HTML5新增的File API, 可以获取名称.文件大小.类型等信息,需先对DOM中的Element进行拖拽事件绑定 相关API 首先获取节点,绑定拖动到该节点的事件,可以改变鼠标形状 var dr ...

  9. Spring AOP实现方式三【附源码】

    注解AOP实现 源码结构: 1.首先我们新建一个接口,love 谈恋爱接口. package com.spring.aop; /** * 谈恋爱接口 * * @author Administrator ...

  10. 转载:10个实用的但偏执的Java编程技术

    在沉浸于编码一段时间以后(比如说我已经投入近20年左右的时间在程序上了),你会渐渐对这些东西习以为常.因为,你知道的…… 任何事情有可能出错,没错,的确如此. 这就是为什么我们要采用“防御性编程”,即 ...