http://codeforces.com/problemset/problem/148/D

D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins

/*题意:
原来袋子里有w仅仅白鼠和b仅仅黑鼠
龙和王妃轮流从袋子里抓老鼠。谁先抓到白色老师谁就赢。
王妃每次抓一仅仅老鼠,龙每次抓完一仅仅老鼠之后会有一仅仅老鼠跑出来。
每次抓老鼠和跑出来的老鼠都是随机的。
如果两个人都没有抓到白色老鼠则龙赢。 王妃先抓。
问王妃赢的概率。 分析:如果dp[i][j]表示轮到王妃抓老鼠时面对剩余i仅仅白鼠和j仅仅黑鼠的胜率
则dp[i][j]能够转化到下面四种情况:
1.王妃胜利,转化概率为i/(i+j)
2.dp[i-1][j-2]---王妃抓黑鼠,龙抓黑鼠,逃跑白鼠,转化概率是j/(i+j) * (j-1)/(i+j-1) * i/(i+j-2)
3.dp[i-1][j-1]---王妃抓到黑鼠,龙抓到白鼠,输! ,转化概率为j/(i+j) * i/(i+j-1)//这不能到达,到达就输了
4.dp[i][j-3]--王妃抓到黑鼠,龙抓到黑鼠,逃跑黑鼠,转化率为j/(i+j) * (j-1)/(i+j-1) * (j-2)/(i+j-2)
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 999999999
typedef long long LL;
using namespace std; const int MAX=1000+10;
int w,b;
double dp[MAX][MAX]; int main(){
while(cin>>w>>b){
for(int i=1;i<=w;++i)dp[i][0]=1;//有白鼠无黑鼠胜率为1
for(int i=0;i<=b;++i)dp[0][i]=0;//无白鼠胜率为0
for(int i=1;i<=w;++i){
for(int j=1;j<=b;++j){
dp[i][j]=i*1.0/(i+j);
//dp[i][j]+=j*1.0/(i+j) * i*1.0/(i+j-1) * dp[i-1][j-1];
if(j>=2)dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * i*1.0/(i+j-2) * dp[i-1][j-2];
if(j>=3)dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * (j-2)*1.0/(i+j-2) * dp[i][j-3];
}
}
printf("%.9f\n",dp[w][b]);
}
return 0;
}

codeforces 148D之概率DP的更多相关文章

  1. CodeForces 602E【概率DP】【树状数组优化】

    题意:有n个人进行m次比赛,每次比赛有一个排名,最后的排名是把所有排名都加起来然后找到比自己的分数绝对小的人数加一就是最终排名. 给了其中一个人的所有比赛的名次.求这个人最终排名的期望. 思路: 渣渣 ...

  2. codeforces 696C PLEASE 概率dp+公式递推+费马小定理

    题意:有3个杯子,排放一行,刚开始钥匙在中间的杯子,每次操作,将左右两边任意一个杯子进行交换,问n次操作后钥匙在中间杯子的概率 分析:考虑动态规划做法,dp[i]代表i次操作后的,钥匙在中间的概率,由 ...

  3. Codeforces 229E Gifts 概率dp (看题解)

    Gifts 感觉题解写的就是坨不知道什么东西.. 看得这个题解. #include<bits/stdc++.h> #define LL long long #define LD long ...

  4. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  5. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  6. codeforces 148D 概率DP

    题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢. 王妃每次抓一仅仅老鼠,龙每次抓完一仅仅老鼠之后会有一仅仅老鼠跑出来. 每次抓老鼠和跑出来的老鼠都是随 ...

  7. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  8. Codeforces Round #301 (Div. 2) D. Bad Luck Island 概率DP

    D. Bad Luck Island Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/540/pr ...

  9. codeforces 768 D. Jon and Orbs(概率dp)

    题目链接:http://codeforces.com/contest/768/problem/D 题意:一共有k种球,要得到k种不同的球至少一个,q个提问每次提问给出一个数pi,问概率大小大于等于pi ...

随机推荐

  1. (转)php中GD库的配置,解决dedecms安装中GD不支持问题

    了解gd库 在php中,使用gd库来对图像进行操作,gd库是一个开放的动态创建的图像的源代码公开的函数库,可以从官方网站http://www.boutell.com/gd处下载.目前,gd库支持gif ...

  2. 简单实现图片间的切换动画 主要用到ViewPager

    简单实现图片间的切换动画 主要用到ViewPagerViewPager是android扩展包v4包中的类,这个类可以让用户左右切换当前的view.ViewPager类需要一个PagerAdapter适 ...

  3. JNI测试-java调用c算法并返回java调用处-1到20阶乘的和

    一,java端: 定义native方法, 'public native long factorial(int n);', 该方法用c/c++实现,计算'1到20阶乘的和',参数中'int n'是前n项 ...

  4. PLSQL远程连接到Oracle服务器

    这里只介绍一种远程连接服务器方法,即本机安装了Oracle客户端和PLSql工具,服务器安装在虚拟机或者另一台电脑上 1.打开Oracle客户端的Net Manager,选择Oracle Net配置— ...

  5. 利用iframe实现提交表单是页面部分刷新

    直接上代码: <%@ page language="java" import="java.util.*" pageEncoding="utf-8 ...

  6. C#:装箱和拆箱相关知识整理

    1.装箱和拆箱是一个抽象的概念   2. 装箱是将值类型转换为引用类型 ;   拆箱是将引用类型转换为值类型   利用装箱和拆箱功能,可通过允许值类型的任何值与Object 类型的值相互转换,将值类型 ...

  7. C语言基础学习基本数据类型-字符专属的输入输出函数

    可以使用%c说明符以及scanf()和printf()函数来输入输出字符.现在我们将学习专门为面向字符而设计的一对函数:getchar()和putchar().getchar()函数没有参数,它返回来 ...

  8. Reflow、Repaint 性能优化

    涉及到操作大量Dom节点及其样式时,有时感觉画面不顺畅,殊不知浏览器亚历山大了.所以我们心里面一定得清楚 Reflow(回流).Repaint(重绘). 浏览器根据每个Dom节点的样式,包括(大小,颜 ...

  9. js获取ip方法

    <script type="text/javascript" src="http://counter.sina.com.cn/ip/" charset=& ...

  10. window.location.href/replace/reload()--页面跳转+替换+刷新

    一.最外层top跳转页面,适合用于iframe框架集 top.window.location.href("${pageContext.request.contextPath}/Login_g ...