Miller-Rabin质数测试
Miller-Rabin质数测试
本文主要讨论使用Miller-Rabin算法编写素数的判定算法,题目来源于hihocoder。
题目
题目要求
时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
使用Miller-Rabin算法进行质数素数测试,要求输入一个数字,对其是否是素数进行判定,并打印出相对应的结果。
输入
第1行:1个正整数t,表示数字的个数,10≤t≤50
第2..t+1行:每行1个正整数,第i+1
行表示正整数a[i]
,2≤a[i]≤10^18
输出
第1..t行:每行1个字符串,若a[i]为质数,第i行输出"Yes",否则输出"No"
样例输入
3
3
7
9
样例输出
Yes
Yes
No
题目分析
Miller-Rabin算法是一种基于费马小定理的扩展算法,首先我们需要知道什么是费马小定理,然后还要知道整个Miller-Rabin算法是如何扩展出来的。
费马小定理
费马小定理:对于质数
p
和任意整数a
,有a^p ≡ a(mod p)(同余)
。反之,若满足a^p ≡ a(mod p)
,p
也有很大概率为质数。
将两边同时约去一个a
,则有a^(p-1) ≡ 1(mod p)
也即是说:假设我们要测试n
是否为质数。我们可以随机选取一个数a
,然后计算a^(n-1) mod n
,如果结果不为1
,我们可以100%断定n
不是质数。
否则我们再随机选取一个新的数a进行测试。如此反复多次,如果每次结果都是1,我们就假定n是质数。
该测试被称为Fermat测试。需要注意的是:Fermat测试不一定是准确的,有可能出现把合数误判为质数的情况。
Miller和Rabin在Fermat测试上,建立了Miller-Rabin质数测试算法。
二次探测定理
如果
p
是奇素数,则x^2 ≡ 1(mod p)
的解为x ≡ 1
或x ≡ p - 1(mod p)
如果a^(n-1) ≡ 1 (mod n)
成立,Miller-Rabin算法不是立即找另一个a
进行测试,而是看n-1
是不是偶数。如果n-1
是偶数,另u=(n-1)/2
,并检查是否满足二次探测定理即a^u ≡ 1
或a^u ≡ n - 1(mod n)
。
举个Matrix67 Blog上的例子,假设n=341
,我们选取的a=2
。则第一次测试时,2^340 mod 341=1
。由于340
是偶数,因此我们检查2^170
,得到2^170 mod 341=1
,满足二次探测定理。同时由于170
还是偶数,因此我们进一步检查2^85 mod 341=32
。此时不满足二次探测定理,因此可以判定341
不为质数。
将这两条定理合起来,也就是最常见的Miller-Rabin测试。
加强版测试验证定理
尽可能提取因子
2
,把n-1
表示成d*2^r
,如果n
是一个素数,那么或者a^d mod n==1
,或者存在某个i
使得a^(d*2^i) mod n=n-1 (0<=i<r)
则我们认为n为素数。(注意i
可以等于0
,这就把a^d mod n=n-1
的情况统一到后面去了)
这里需要注意的是,我们将该定理作为判定条件,仍然是一个不确定的概率判定条件。Miller-Rabin素性测试同样是不确定算法,我们把可以通过以a
为底的Miller-Rabin测试的合数称作以a为底的强伪素数(strong pseudoprime)。第一个以2为底的强伪素数为2047。第一个以2和3为底的强伪素数则大到1 373 653。
所以我们在实际使用过程中,使用rand()
函数生成随机数,或者进行多次检测判定,还是能够得到比较高的判定成功率,Miller-Rabin算法对于素数的研究判定有着巨大的辅助作用。
代码
整体代码
#include <iostream>
#include <cstdlib>
using namespace std;
typedef long long llong;
//求取(x * y) % n
llong mod(llong x, llong y,llong n)
{
llong res = 0;
llong temp = x % n;
while(y)
{
if(y & 0x1)
if((res += temp) > n)
res -= n;
if((temp <<= 1) > n)
temp -= n;
y >>= 1;
}
return res;
}
//求取(x ^ y) % n
llong get_mod(llong x, llong y, llong n)
{
llong res = 1;
llong temp = x;
while(y)
{
if(y & 0x1)
res = mod(res, temp, n);
temp = mod(temp, temp, n);
y >>= 1;
}
return res;
}
//编写bool函数,判定是否为素数
bool is_prime(llong n, int t)
{
if(n < 2)
return false;
if(n == 2)
return true;
if(!(n & 0x1))
return false;
llong k = 0, m, a, i;
for(m = n -1; !(m & 0x1); m >>= 1, ++k);
while(t--)
{
a = get_mod(rand() % (n - 2) + 2, m, n);
if(a != 1)
{
for(i = 0; i < k && a != n-1; ++i)
{
cout << a << endl;
a = mod(a, a, n);
}
//根据二次探测定理,只要不满足(a == 1) || (a == n - 1),就会一直遍历下去,直到最后返回false
if(i >= k)
return false;
}
}
return true;
}
//主函数
int main()
{
int times;
llong num;
cin >> times;
while(times--)
{
cin >> num;
if(is_prime(num, 1))
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return 0;
}
代码分解
mod()函数
//求取(x * y) % n
llong mod(llong x, llong y,llong n)
{
llong res = 0;
llong temp = x % n;
while(y)
{
if(y & 0x1)
if((res += temp) > n)
res -= n;
if((temp <<= 1) > n)
temp -= n;
y >>= 1;
}
return res;
}
这个函数使用移位运算,通过将y转换成二进制形式,十分高效地求取了两个数字乘积的余数。
get_mod()函数
//求取(x ^ y) % n
llong get_mod(llong x, llong y, llong n)
{
llong res = 1;
llong temp = x;
while(y)
{
if(y & 0x1)
res = mod(res, temp, n);
temp = mod(temp, temp, n);
y >>= 1;
}
return res;
}
这个函数是经典的高次幂函数求余算法,即蒙哥马利算法,在上一篇博文中也有过介绍,博文链接。
其核心思想就是将幂指数转换成二进制,通过移位运算快速地求取余数,避免了数据溢出,而且效率非常高。
is_prime()函数
//编写bool函数,判定是否为素数
bool is_prime(llong n, int t)
{
if(n < 2)
return false;
if(n == 2)
return true;
if(!(n & 0x1))
return false;
llong k = 0, m, a, i;
for(m = n -1; !(m & 0x1); m >>= 1, ++k);
while(t--)
{
a = get_mod(rand() % (n - 2) + 2, m, n);
if(a != 1)
{
for(i = 0; i < k && a != n-1; ++i)
{
cout << a << endl;
a = mod(a, a, n);
}
//根据二次探测定理,只要不满足(a == 1) || (a == n - 1),就会一直遍历下去,直到最后返回false
if(i >= k)
return false;
}
}
return true;
}
即数字是否是素数的判定函数,依照我们在上文提出的加强定理,包含如下要点:
- 对所需判定的奇数
n
进行n-1
提取因子2
,把n-1
表示成d*2^r
的形式;- 取随机数
a=rand()
,如果a^d mod n == 1
则判定为素数;- 如果
a^d mod n != 1
,则通过循环查找是否有i
满足a^(d*2^i) mod n = n-1
,若有,则判定为素数;- 如果上述条件都不成立,则遍历结果得到
i == k
,此时返回false
- Tips:这里需要注意的是,Miller-Rabin算法是一个不确定算法,仍有一定的错误概率,正如上文所述的,第一个以2为底的强伪素数为2047。第一个以2和3为底的强伪素数则大到1 373 653。在一定的使用范围内仍然可以得到高效、准确的结果!
Github: https://github.com/haoyuanliu
个人博客: http://haoyuanliu.github.io/
个人站点,欢迎访问,欢迎评论!
Miller-Rabin质数测试的更多相关文章
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
- Miller Rabin 算法简介
0.1 一些闲话 最近一次更新是在2019年11月12日.之前的文章有很多问题:当我把我的代码交到LOJ上,发现只有60多分.我调了一个晚上,尝试用{2, 3, 5, 7, 11, 13, 17, 1 ...
- Miller Rabin算法学习笔记
定义: Miller Rabin算法是一个随机化素数测试算法,作用是判断一个数是否是素数,且只要你脸不黑以及常数不要巨大一般来讲都比\(O(\sqrt n)\)的朴素做法更快. 定理: Miller ...
- 【数论基础】素数判定和Miller Rabin算法
判断正整数p是否是素数 方法一 朴素的判定
- Miller Rabin 详解 && 小清新数学题题解
在做这道题之前,我们首先来尝试签到题. 签到题 我们定义一个函数:\(qiandao(x)\) 为小于等于 x 的数中与 x 不互质的数的个数.要求 \(\sum\limits _{i=l}^r qi ...
随机推荐
- C# 异步操作
在程序中,普通的方法是单线程的.但中途如果有大型的操作,比如读取大文件,大批量操作数据库,网络传输等,都会导致程序阻塞,表现在界面上就是程序卡或者死掉,界面元素不动了,不响应了.C#异步调用很好的解决 ...
- Spring配置多数据源错误总结
由于系统需要调用多个数据源包含mysql,sqlServe和Oracle,所以要在Spring的xml文件中配置多数据源,一下是配置过程中常见的错误: 1.配置的是mysql的数据源,却报oracle ...
- java_设计模式_适配器模式_Adapter Pattern(2016-08-09)
概念 将一个接口转换成客户希望的另外一个接口.(该模式使得原本不兼容的类可以一起工作). UML图 适配器模式有类的适配器模式和对象的适配器模式两种不同的形式. (1)对象的适配器模式结构图 (2)类 ...
- 【POJ1151】【扫描线+线段树】Atlantis
Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...
- gvim 常用命令
插入: insert 强退: :q! 退出: :q 保存: :w 保存退出::wq 复制: yy(单行) 多行:8yy 删除: dd(单行) 多行:8dd 或者 :4,8d 执行脚本: :! ...
- 每天一条linux命令——login
login命令用于给出登录界面,可用于重新登录或者切换用户身份,也可通过它的功能随时更换登入身份.当/etc/nologin文件存在时,系统只root帐号登入系统,其他用户一律不准登入. 语法: lo ...
- 自定义Excel导出简易组件
1.组件原理 excel的数据存储是以xml格式存储的,所以导出Excel文件可以通过生成XML来实现.当然XML必须符合一定的格式要求. 2.组件实现 (1)新建类库文件“MyExcel” (2)添 ...
- jQuery备忘录--私家版
最近在看jQuery,总是看过了忘,不知道该怎么办?准备开启洗脑模式,日常念一念,紧箍咒加身. 1.jQuery方法第一步:ready=>加载html的骨架.而onload=>整个页面加载 ...
- Python爬虫第一步
这只是记录一下自己学习爬虫的过程,可能少了些章法.我使用过的是Python3.x版本,IDE为Pycharm. 这里贴出代码集合,这一份代码也是以防自己以后忘记了什么,方便查阅. import req ...
- bt种子文件文件结构
估计80%以上接触互联网的人都知道bt是什么东西,任何一个用bt下载的人都知道这样一个概念,种子.bt种子就是记录了p2p对等网络中tracker, nodes, files等信息,也就是说,这个 ...