TensorFlow 之 手写数字识别MNIST
MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners
Deep MNIST for Experts - https://www.tensorflow.org/get_started/mnist/pros
版本:
TensorFlow 1.2.0 + Flask 0.12 + Gunicorn 19.6
相关文章:
TensorFlow 之 入门体验
TensorFlow 之 手写数字识别MNIST
TensorFlow 之 物体检测
TensorFlow 之 构建人物识别系统
MNIST相当于机器学习界的Hello World。
这里在页面通过 Canvas 画一个数字,然后传给TensorFlow识别,分别给出Softmax回归模型、多层卷积网络的识别结果。
(1)文件结构
│ main.py
│ requirements.txt
│ runtime.txt
├─mnist
│ │ convolutional.py
│ │ model.py
│ │ regression.py
│ │ __init__.py
│ └─data
│ convolutional.ckpt.data-00000-of-00001
│ convolutional.ckpt.index
│ regression.ckpt.data-00000-of-00001
│ regression.ckpt.index
├─src
│ └─js
│ main.js
├─static
│ ├─css
│ │ bootstrap.min.css
│ └─js
│ jquery.min.js
│ main.js
└─templates
index.html
(2)训练数据
下载以下文件放入/tmp/data/,不用解压,训练代码会自动解压。
http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
执行命令训练数据(Softmax回归模型、多层卷积网络)
- # python regression.py
- # python convolutional.py
执行完成后 在 mnist/data/ 里会生成以下几个文件,重新训练前需要把这几个文件先删掉。
convolutional.ckpt.index
regression.ckpt.data-00000-of-00001
regression.ckpt.index
(3)启动Web服务测试
- # cd /usr/local/tensorflow2/tensorflow-models/tf-mnist
- # pip install -r requirements.txt
- # gunicorn main:app --log-file=- --bind=localhost:8000
浏览器中访问:http://localhost:8000
*** 运行的TensorFlow版本、数据训练的模型、还有这里Canvas的转换都对识别率有一定的影响~!
(4)源代码
Web部分比较简单,页面上放置一个Canvas,鼠标抬起时将Canvas的图像通过Ajax传给后台API,然后显示API结果。
templates/index.html
main.py
- import numpy as np
- import tensorflow as tf
- from flask import Flask, jsonify, render_template, request
- from mnist import model
- x = tf.placeholder("float", [None, 784])
- sess = tf.Session()
- # restore trained data
- with tf.variable_scope("regression"):
- y1, variables = model.regression(x)
- saver = tf.train.Saver(variables)
- saver.restore(sess, "mnist/data/regression.ckpt")
- with tf.variable_scope("convolutional"):
- keep_prob = tf.placeholder("float")
- y2, variables = model.convolutional(x, keep_prob)
- saver = tf.train.Saver(variables)
- saver.restore(sess, "mnist/data/convolutional.ckpt")
- def regression(input):
- return sess.run(y1, feed_dict={x: input}).flatten().tolist()
- def convolutional(input):
- return sess.run(y2, feed_dict={x: input, keep_prob: 1.0}).flatten().tolist()
- # webapp
- app = Flask(__name__)
- @app.route('/api/mnist', methods=['POST'])
- def mnist():
- input = ((255 - np.array(request.json, dtype=np.uint8)) / 255.0).reshape(1, 784)
- output1 = regression(input)
- output2 = convolutional(input)
- print(output1)
- print(output2)
- return jsonify(results=[output1, output2])
- @app.route('/')
- def main():
- return render_template('index.html')
- if __name__ == '__main__':
- app.run()
mnist/model.py
- import tensorflow as tf
- # Softmax Regression Model
- def regression(x):
- W = tf.Variable(tf.zeros([784, 10]), name="W")
- b = tf.Variable(tf.zeros([10]), name="b")
- y = tf.nn.softmax(tf.matmul(x, W) + b)
- return y, [W, b]
- # Multilayer Convolutional Network
- def convolutional(x, keep_prob):
- def conv2d(x, W):
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
- def max_pool_2x2(x):
- return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- # First Convolutional Layer
- x_image = tf.reshape(x, [-1, 28, 28, 1])
- W_conv1 = weight_variable([5, 5, 1, 32])
- b_conv1 = bias_variable([32])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
- h_pool1 = max_pool_2x2(h_conv1)
- # Second Convolutional Layer
- W_conv2 = weight_variable([5, 5, 32, 64])
- b_conv2 = bias_variable([64])
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
- h_pool2 = max_pool_2x2(h_conv2)
- # Densely Connected Layer
- W_fc1 = weight_variable([7 * 7 * 64, 1024])
- b_fc1 = bias_variable([1024])
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- # Dropout
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
- # Readout Layer
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
- y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
- return y, [W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2]
mnist/convolutional.py
- import os
- import model
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- data = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # model
- with tf.variable_scope("convolutional"):
- x = tf.placeholder(tf.float32, [None, 784])
- keep_prob = tf.placeholder(tf.float32)
- y, variables = model.convolutional(x, keep_prob)
- # train
- y_ = tf.placeholder(tf.float32, [None, 10])
- cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- saver = tf.train.Saver(variables)
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- for i in range(20000):
- batch = data.train.next_batch(50)
- if i % 100 == 0:
- train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
- print("step %d, training accuracy %g" % (i, train_accuracy))
- sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
- print(sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels, keep_prob: 1.0}))
- path = saver.save(
- sess, os.path.join(os.path.dirname(__file__), 'data', 'convolutional.ckpt'),
- write_meta_graph=False, write_state=False)
- print("Saved:", path)
mnist/regression.py
- import os
- import model
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- data = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # model
- with tf.variable_scope("regression"):
- x = tf.placeholder(tf.float32, [None, 784])
- y, variables = model.regression(x)
- # train
- y_ = tf.placeholder("float", [None, 10])
- cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
- train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- saver = tf.train.Saver(variables)
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- for _ in range(1000):
- batch_xs, batch_ys = data.train.next_batch(100)
- sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
- print(sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels}))
- path = saver.save(
- sess, os.path.join(os.path.dirname(__file__), 'data', 'regression.ckpt'),
- write_meta_graph=False, write_state=False)
- print("Saved:", path)
参考:
http://memo.sugyan.com/entry/20151124/1448292129
TensorFlow 之 手写数字识别MNIST的更多相关文章
- OpenCV+TensorFlow图片手写数字识别(附源码)
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...
- keras框架的MLP手写数字识别MNIST,梳理?
keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from kera ...
- python-积卷神经网络全面理解-tensorflow实现手写数字识别
首先,关于神经网络,其实是一个结合很多知识点的一个算法,关于cnn(积卷神经网络)大家需要了解: 下面给出我之前总结的这两个知识点(基于吴恩达的机器学习) 代价函数: 代价函数 代价函数(Cost F ...
- Tensorflow实战 手写数字识别(Tensorboard可视化)
一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打 ...
- 【转】机器学习教程 十四-利用tensorflow做手写数字识别
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...
- 100天搞定机器学习|day39 Tensorflow Keras手写数字识别
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...
- Tensorflow手写数字识别---MNIST
MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000
- 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
随机推荐
- laravel5.1接收ajax数据
前台: $.ajax({ type: 'POST', url: '{!! url('aw/data') !!}', data:{'_token':'<?php echo csrf_token() ...
- ArcGIS API for javascript开发笔记(四)——GP服务调用之GP模型的规范化制作详解
感谢一路走来默默陪伴和支持的你~~~ -------------------欢迎来访,拒绝转载------------------- 在之前的利用Python分析GP服务运行结果的输出路径 & ...
- C# 枚举 小总结
枚举 枚举类型声明为一组相关的符号常数定义了一个类型名称. 枚举类型为定义一组可以赋给变量的命名整数常量提供了一种有效的方法.例如:假设你必须定义一个变量,该变量的值表示一周中的一天.该变量只能存储七 ...
- 【Pyton】【小甲鱼】正则表达式(一)
正则表达式学习: >>> import re >>> re.search(r'FishC','I love FishC.com!') <_sre.SRE_Ma ...
- android返回到第一个activity
问题:Android顺序打开多个Activity,如何返回到第一个Activity(一般为首页)? 情形:如 A 打开 B, B 打开 C, C 打开 D, 然后如果从 D 一步返回到 A,并清楚掉 ...
- 001-Spring Cloud Edgware.SR3 升级最新 Finchley.SR1,spring boot 1.5.9.RELEASE 升级2.0.4.RELEASE注意问题点
一.前提 升级前 => 升级后 Spring Boot 1.5.x => Spring Boot 2.0.4.RELEASE Spring Cloud Edgware SR3 => ...
- mysql查看和修改注释
MySQL查看注释,MySQL修改注释,mysql查看注释,mysql修改注释 1.给大家做演示,这里随便创建一张学生表,代码如下: CREATE TABLE `student` ( `id` int ...
- spring的统一异常处理
在控制器(controller)中添加统一异常处理的方法,在方法前面加@ExceptionHandler[(异常类.class)]注解
- R之ddlpy函数学习[转载]
转自:https://www.cnblogs.com/aloiswei/p/6032513.html 1.函数 ddply(.data, .variables, .fun = NULL, ..., . ...
- Map<String, String>循环遍历的方法
Map<String, String>循环遍历的方法 Map<String, String>循环遍历的方法 Map<String, String>循环遍历的方法 下 ...