There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0, and to take course 0 you should
  also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.

我的理解是这个题就是问, 如果有两门课互为prerequisite课, 那么就False, 否则True, 注意的是这里的互为有可能是中间隔了几门课, 而不是直接的prerequisite, 例如: [(0,1),(2,0),(1,2)], 这里 1 是0 的前置课, 0 是2 的前置课, 所以1是2 的间接前置课, 但是最后一个input说2 是1 的前置课, 所以就矛盾, 不可能完成, return False. 所以思路为, 建一个dictionary, 分别将input 的每个pair(c1, c2)放入dictionary里面, 前置课(c2)为key, 后置课(c1)为value, 不过放入之前要用bfs 判断c1 是否为c2 的前置课, 如果是, 那么矛盾, return False. 否则一直判断到最后的pair, 返回Ture.

12/05/2019 Update: 这个题目实际上是有向图里面找是否有环的问题。用dfs去遍历每个graph的点,可以参考Directed Graph Loop detection and if not have, path to print all path. T: O(n)   S: O(n)

1. Constraints:

1) 实际这里的n对我这个做法没有什么用处, 因为课程id 是unique的.

2. Ideas

BFS:     T: O(n)   number of nodes,     S: O(n^2)

1) init dictionary, d

2) for pair(c1,c2) in prerequisites, use bfs to see if c1 is a prerequisity of c2, if so , return False, else, d[c2].add(c1), and until all pairs been checked. return True

3) bfs: use queue and visited to check whether there is a path from source to target.

3. Code

 class Solution:
def courseSchedule(self, numCourse, prerequisites):
def bfs(d, source, target):
if source not in d: return False
queue, visited = collections.deque([source]), set([source])
while queue:
node = queue.popleft()
if node == target: return True
for each in d[node]:
if each not in visited:
queue.append(each)
visited.add(each)
return False d = collections.defaultdict(set)
for c1, c2 in prerequisites:
if bfs(d,c1, c2): return False
d[c2].add(c1)
return True

4. Test cases:

1) [(0,1),(2,0),(1,2)],  =>   False

[LeetCode] 207 Course Schedule_Medium tag: BFS, DFS的更多相关文章

  1. [LeetCode] 490. The Maze_Medium tag: BFS/DFS

    There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolli ...

  2. [LeetCode] 133. Clone Graph_ Medium tag: BFS, DFS

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  3. [LeetCode] 529. Minesweeper_ Medium_ tag: BFS

    Let's play the minesweeper game (Wikipedia, online game)! You are given a 2D char matrix representin ...

  4. [LeetCode] 690. Employee Importance_Easy tag: BFS

    You are given a data structure of employee information, which includes the employee's unique id, his ...

  5. [LeetCode] 733. Flood Fill_Easy tag: BFS

    An image is represented by a 2-D array of integers, each integer representing the pixel value of the ...

  6. [LeetCode] 130. Surrounded Regions_Medium tag: DFS/BFS

    Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'. A reg ...

  7. [LeetCode] 849. Maximize Distance to Closest Person_Easy tag: BFS

    In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is emp ...

  8. [LeetCode] 513. Find Bottom Left Tree Value_ Medium tag: BFS

    Given a binary tree, find the leftmost value in the last row of the tree. Example 1: Input: 2 / \ 1 ...

  9. [LeetCode] 821. Shortest Distance to a Character_Easy tag: BFS

    Given a string S and a character C, return an array of integers representing the shortest distance f ...

随机推荐

  1. 【Python3】 使用django 2.0 + python3.6.4 创建应用

    python版本:3.6.4 django版本:2.0 1 创建应用 输入命令 python manage.py startapp blog 2 在项目目录创建 templates文件夹 用于存放我们 ...

  2. 原生js--兼容获取窗口滚动条位置和窗口大小的方法

    各个浏览器对获取获取窗口滚动条位置和窗口大小没有提供统一的API,以下是对其封装,解决兼容性问题 /** * 获取浏览器视口的大小(显示文档的部分) *  */function getViewPort ...

  3. Linux命令 swap:内存交换空间

    swap 内存交换空间的概念 swap使用上的限制

  4. angularjs结合html5的拖拽行为

    闲聊: 小颖公司的项目之前要实现一个将左侧树中当前拖拽的内容,动态添加到右侧树种,虽然这个模块当时没有分给小颖,是同事完成的(小颖也不会嘻嘻),后来看了下他写代码,小颖自己写了个小demo.就当做个笔 ...

  5. android开发,权限获取

    转:http://blog.csdn.net/yawinstake/article/details/6748897 访问登记属性 android.permission.ACCESS_CHECKIN_P ...

  6. Mac Lion Configure Apache

    mkdir ~/Sites echo "<html><body><h1>My site works</h1></body>< ...

  7. 23种设计模式之中介者模式(Mediator)

    中介者模式是一种对象的行为型模式,通过一个中介对象来封装一系列的对象交互.中介者使得各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互.中介者对象的存在保证了对象结构上的稳 ...

  8. android分辨率适配

    重要概念 什么是屏幕尺寸.屏幕分辨率.屏幕像素密度? 什么是dp.dip.dpi.sp.px?他们之间的关系是什么? 什么是mdpi.hdpi.xdpi.xxdpi?如何计算和区分? 在下面的内容中我 ...

  9. hdu4027Can you answer these queries?【线段树】

    A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use ...

  10. hdu4998 Rotate【计算几何】

    Noting is more interesting than rotation!  Your little sister likes to rotate things. To put it easi ...