论文地址:https://arxiv.org/abs/1707.06342

主要思想

  1. 选择一个channel的子集,然后让通过样本以后得到的误差最小(最小二乘),将裁剪问题转换成了优化问题。
  2. 这篇论文题目说是对filter的裁剪,其实是对channel的裁剪,对channel裁剪以后,当然涉及filter的裁剪。
  3. 对channel裁剪以后当然可以实现压缩和加速。

实现细节

  1. 在i+1层中选择channel的子集,因为filter i+1层的个数没有变,所以layer i + 2层的尺寸大小也没有变。
  2. 选择子集以后,filter layer i层对应的filter就可以被裁减掉(输出个数裁剪),相应filter i+1层的filter也可以被裁减掉(输入个数裁剪)

  1. 因为选子集然后最小化误差是一个NP问题,因此本文采用了贪心算法,每次选择添加一个channel使得通过当前样本得到的误差最小。

  1. 本文对残差网络的处理是,因为最后要求和,求和的时候需要保持channel数目一样,因为只对前两个卷积进行了裁剪,最后一个没有裁剪。也就是它没有对identical feature map进行裁剪。

论文笔记——ThiNet: A Filter Level Pruning Method for Deep Neural Network Compreesion的更多相关文章

  1. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression笔记

    前言 致力于滤波器的剪枝,论文的方法不改变原始网络的结构.论文的方法是基于下一层的统计信息来进行剪枝,这是区别已有方法的. VGG-16上可以减少3.31FLOPs和16.63倍的压缩,top-5的准 ...

  2. 论文笔记:Mastering the game of Go with deep neural networks and tree search

    Mastering the game of Go with deep neural networks and tree search Nature 2015  这是本人论文笔记系列第二篇 Nature ...

  3. 论文笔记之《Event Extraction via Dynamic Multi-Pooling Convolutional Neural Network》

    1. 文章内容概述 本人精读了事件抽取领域的经典论文<Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networ ...

  4. 论文笔记:蒸馏网络(Distilling the Knowledge in Neural Network)

    Distilling the Knowledge in Neural Network Geoffrey Hinton, Oriol Vinyals, Jeff Dean preprint arXiv: ...

  5. 论文笔记系列-Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves

    I. 背景介绍 1. 学习曲线(Learning Curve) 我们都知道在手工调试模型的参数的时候,我们并不会每次都等到模型迭代完后再修改超参数,而是待模型训练了一定的epoch次数后,通过观察学习 ...

  6. 论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding

    论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Prunin ...

  7. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  8. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  9. 论文翻译:2020_Nonlinear Residual Echo Suppression using a Recurrent Neural Network

    论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3367/attachments/779/817/Thu-1-10- ...

随机推荐

  1. keepalived的log

    vrrp_script chk_http_port { script "</dev/tcp/127.0.0.1/8088" interval 1 weight -2 } ke ...

  2. 16 jmeter中的监听器以及测试结果分析

    常用监听器 断言结果.查看结果树.聚合报告.Summary Report.用表格查看结果.图形结果.aggregate graph等 指标分析 -Samples:本次场景中一共完成了多少请求-Aver ...

  3. EXTJS 4:在renderer中如何控制一个CheckColumn的行为,如显示,只读等属性

    在编写grid下的column时,大家肯定会经常用到renderer这个方法来改变文字的呈现形式,那么如果该column是一个特殊的column,比如CheckColumn时,该方法应该怎样写呢?官方 ...

  4. Locust性能测试2-先登录场景案例

    前言 有很多网站不登录的话,是无法访问到里面的页面的,这就需要先登录了 实现场景:先登录(只登录一次),然后访问页面->我的地盘页->产品页->项目页 官方案例 下面是一个简单的lo ...

  5. node初识——node中的require方法与require.js的区别

    出处:http://blog.csdn.net/u013613428/article/details/51966500 作为一个前端的新手,总是诧异于js的模块载入方式,看到了通过requireJs提 ...

  6. 关闭Oracle 11g的DPR特性

    关闭Oracle 11g的DPR(Direct Path Read)特性 查看event参数值: SQL> show parameter event NAME TYPE VALUE ------ ...

  7. c语言的字符串拷贝函数的精简

    #include <stdio.h>#include <string.h>void str_cpy(char * to, char *from){    while ((*to ...

  8. 数据仓库原理<4>:联机分析处理(OLAP)

    本文转载自:http://www.cnblogs.com/hbsygfz/p/4762085.html 1. 引言 本篇主要介绍数据仓库中的一项重要分析技术——联系分析处理(OLAP). 在第一篇笔者 ...

  9. 汽车变智能只靠ADAS?麦克风也是主角

    在先进驾驶辅助系统(ADAS)中,结合视觉处理器的CMOS影像感测器已在协助汽车辨识与分类方面发挥关键作用.至于其“听觉”呢? 麦克风也能扮演像摄影机般重要的角色,为自动驾驶车增添更多“智慧”功能吗? ...

  10. MySQL数据库----表与表之间的关系

    表1 foreign key 表2 则表1的多条记录对应表2的一条记录,即多对一 利用foreign key的原理我们可以制作两张表的多对多,一对一关系 多对多: 表1的多条记录可以对应表2的一条记录 ...