hive 下篇
由于spark on hive 问题,导致无法插入数据,暂时使用spark进行hive操作
向分区表插入数据
hive> show partitions customers;
OK
partition
city=beijing
city=shenzhen
Time taken: 0.071 seconds, Fetched: 2 row(s)
查看HDFS:
drwxr-xr-x - root supergroup 0 2018-04-13 11:50 /user/hive/warehouse/gamedw.db/cust
-rwxr-xr-x 1 root supergroup 96 2018-04-11 17:14 /user/hive/warehouse/gamedw.db/cust/customers.txt
-rwxr-xr-x 1 root supergroup 10 2018-04-13 11:50 /user/hive/warehouse/gamedw.db/cust/part-00000-ebb85cb3-73e4-4d7b-aa07-8f007c8887bb-c000
drwx-wx-wx - root supergroup 0 2018-03-29 16:35 /user/hive/warehouse/gamedw.db/customers
drwx-wx-wx - root supergroup 0 2018-03-29 16:35 /user/hive/warehouse/gamedw.db/customers/city=beijing
-rwx-wx-wx 1 root supergroup 80 2018-03-29 16:35 /user/hive/warehouse/gamedw.db/customers/city=beijing/customers.txt
drwx-wx-wx - root supergroup 0 2018-03-28 17:03 /user/hive/warehouse/gamedw.db/customers/city=shenzhen
-rwx-wx-wx 1 root supergroup 80 2018-03-28 17:03 /user/hive/warehouse/gamedw.db/customers/city=shenzhen/customers.txt
插入数据:
scala> hivecon.sql("insert into gamedw.customers partition(city='guangzhen')select * from gamedw.cust ").show
18/04/13 14:14:44 WARN hive.log: Updating partition stats fast for: customers
18/04/13 14:14:44 WARN hive.log: Updated size to 106
++
||
++
++
scala> hivecon.sql("show partitions gamedw.customers ").show
+--------------+
| partition|
+--------------+
| city=beijing|
|city=guangzhen|
| city=shenzhen|
+--------------+
然后再查看hdfs :
drwx-wx-wx - root supergroup 0 2018-04-13 14:14 /user/hive/warehouse/gamedw.db/customers
drwx-wx-wx - root supergroup 0 2018-03-29 16:35 /user/hive/warehouse/gamedw.db/customers/city=beijing
-rwx-wx-wx 1 root supergroup 80 2018-03-29 16:35 /user/hive/warehouse/gamedw.db/customers/city=beijing/customers.txt
drwx-wx-wx - root supergroup 0 2018-04-13 14:14 /user/hive/warehouse/gamedw.db/customers/city=guangzhen
-rwx-wx-wx 1 root supergroup 96 2018-04-13 14:14 /user/hive/warehouse/gamedw.db/customers/city=guangzhen/part-00000-8513f59a-0fb6-45f8-bf87-1d27254d9b74-c000
-rwx-wx-wx 1 root supergroup 10 2018-04-13 14:14 /user/hive/warehouse/gamedw.db/customers/city=guangzhen/part-00001-8513f59a-0fb6-45f8-bf87-1d27254d9b74-c000
drwx-wx-wx - root supergroup 0 2018-03-28 17:03 /user/hive/warehouse/gamedw.db/customers/city=shenzhen
-rwx-wx-wx 1 root supergroup 80 2018-03-28 17:03 /user/hive/warehouse/gamedw.db/customers/city=shenzhen/customers.txt
由于表cust数据是两个文件,因此插入数据后,表customers,自动生成了一个分区,在HDFS中多了两个文件:
[root@host ~]# hdfs dfs -cat /user/hive/warehouse/gamedw.db/customers/city=guangzhen/part-00001-8513f59a-0fb6-45f8-bf87-1d27254d9b74-c000
nihao 1 5
[root@host ~]# hdfs dfs -cat /user/hive/warehouse/gamedw.db/customers/city=guangzhen/part-00000-8513f59a-0fb6-45f8-bf87-1d27254d9b74-c000
tianyt_touch100 1 50
wangwu 1 85
zhangsan 1 20
liuqin 0 56
wangwu 0 47
liuyang 1 32
hello 0 100
同样插入如下数据:
scala> hivecon.sql("insert overwrite table gamedw.customers partition(city='wuhan')select * from gamedw.cust where nianling<>5").show
18/04/13 14:31:13 WARN hive.log: Updating partition stats fast for: customers
18/04/13 14:31:13 WARN hive.log: Updated size to 96
++
||
++
++
查看hdfs:
drwx-wx-wx - root supergroup 0 2018-04-13 14:31 /user/hive/warehouse/gamedw.db/customers/city=wuhan
-rwx-wx-wx 1 root supergroup 96 2018-04-13 14:31 /user/hive/warehouse/gamedw.db/customers/city=wuhan/part-00000-d3a1ad44-e0d6-4a1a-9dd0-b42933085b46-c000
-rwx-wx-wx 1 root supergroup 0 2018-04-13 14:31 /user/hive/warehouse/gamedw.db/customers/city=wuhan/part-00001-d3a1ad44-e0d6-4a1a-9dd0-b42933085b46-c000
[root@host ~]# hdfs dfs -text /user/hive/warehouse/gamedw.db/customers/city=wuhan/part-00001-d3a1ad44-e0d6-4a1a-9dd0-b42933085b46-c000
[root@host ~]# hdfs dfs -text /user/hive/warehouse/gamedw.db/customers/city=wuhan/part-00000-d3a1ad44-e0d6-4a1a-9dd0-b42933085b46-c000
tianyt_touch100 1 50
wangwu 1 85
zhangsan 1 20
liuqin 0 56
wangwu 0 47
liuyang 1 32
hello 0 100
可以查出虽然一个文件的数据已经被过滤,但插入时依然会生成一个空的文件
一次添加两个分区:
scala> hivecon.sql("from gamedw.cust cst insert overwrite table gamedw.customers partition(city='nanjing') select * where cst.nianling<>5 insert overwrite table gamedw.customers partition(city='luohe') select * where cst.nianling=5 ").show
18/04/13 15:16:38 WARN hive.log: Updating partition stats fast for: customers 18/04/13 15:16:38 WARN hive.log: Updated size to 96
18/04/13 15:16:39 WARN hive.log: Updating partition stats fast for: customers 18/04/13 15:16:39 WARN hive.log: Updated size to 10
++ || ++ ++
hive> show partitions customers;
OK
partition
city=beijing
city=guangzhen
city=luohe
city=nanjing
city=shenzhen
city=wuhan
Time taken: 0.086 seconds, Fetched: 6 row(s)
hive> select * from customers where city='luohe' or city='nanjing';
OK
customers.custname customers.sex customers.age customers.city
nihao 1 5 luohe
tianyt_touch100 1 50 nanjing
wangwu 1 85 nanjing
zhangsan 1 20 nanjing
liuqin 0 56 nanjing
wangwu 0 47 nanjing
liuyang 1 32 nanjing
hello 0 100 nanjing
Time taken: 1.037 seconds, Fetched: 8 row(s)
drwx-wx-wx - root supergroup 0 2018-04-13 15:16 /user/hive/warehouse/gamedw.db/customers/city=luohe
-rwx-wx-wx 1 root supergroup 0 2018-04-13 15:16 /user/hive/warehouse/gamedw.db/customers/city=luohe/part-00000-0315be67-7d9a-451a-bdea-09f18f02b97c-c000
-rwx-wx-wx 1 root supergroup 10 2018-04-13 15:16 /user/hive/warehouse/gamedw.db/customers/city=luohe/part-00001-0315be67-7d9a-451a-bdea-09f18f02b97c-c000
drwx-wx-wx - root supergroup 0 2018-04-13 15:16 /user/hive/warehouse/gamedw.db/customers/city=nanjing
-rwx-wx-wx 1 root supergroup 96 2018-04-13 15:16 /user/hive/warehouse/gamedw.db/customers/city=nanjing/part-00000-4e959b24-fff2-45c0-a3d7-f4136d7ea96c-c000
-rwx-wx-wx 1 root supergroup 0 2018-04-13 15:16 /user/hive/warehouse/gamedw.db/customers/city=nanjing/part-00001-4e959b24-fff2-45c0-a3d7-f4136d7ea96c-c000
成功一次添加两个分区
之前的select 插入均为静态插入;
动态插入分区:
scala> hivecon.sql("insert overwrite table gamedw.customers partition(city) select custname,sex,nianling,'kaifeng' as city from gamedw.cust").show
org.apache.spark.SparkException: Dynamic partition strict mode requires at least one static partition column. To turn this off set hive.exec.dynamic.partition.mode=nonstrict
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.run(InsertIntoHiveTable.scala:301)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:67)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:182)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:67)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:623)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:691)
... 48 elided
hive> set hive.exec.dynamic.partition.mode=nonstrict;(在此设置无效,需要在spark设置)
scala> hivecon.sql("set hive.exec.dynamic.partition.mode=nonstrict").show
+--------------------+---------+ |
key| value|
+--------------------+---------+ |
hive.exec.dynamic...|nonstrict|
+--------------------+---------+
scala> hivecon.sql("insert overwrite table gamedw.customers partition(city) select custname,sex,nianling,'kaifeng' as city from gamedw.cust").show
18/04/13 15:33:46 WARN hive.log: Updating partition stats fast for: customers
18/04/13 15:33:46 WARN hive.log: Updated size to 106
++ || ++ ++
hive> select * from customers where city='kaifeng';
OK
customers.custname customers.sex customers.age customers.city
tianyt_touch100 1 50 kaifeng
wangwu 1 85 kaifeng
zhangsan 1 20 kaifeng
liuqin 0 56 kaifeng
wangwu 0 47 kaifeng
liuyang 1 32 kaifeng
hello 0 100 kaifeng
nihao 1 5 kaifeng
Time taken: 0.161 seconds, Fetched: 8 row(s)
bingo,动态插入成功
单个语句创建表并加载数据
scala> hivecon.sql("create table cust_copy as select custname,sex,nianling from gamedw.cust").show
18/04/13 15:46:38 WARN metastore.HiveMetaStore: Location: hdfs://localhost:9000/user/hive/warehouse/cust_copy specified for non-external table:cust_copy
++ || ++ ++
查看HDFS:
drwx-wx-wx - root supergroup 0 2018-04-13 15:58 /user/hive/warehouse/gamedw.db/cust_copy
-rwx-wx-wx 1 root supergroup 96 2018-04-13 15:58 /user/hive/warehouse/gamedw.db/cust_copy/part-00000-8e3d26e5-5b38-4308-b631-9815f6730acc-c000
-rwx-wx-wx 1 root supergroup 10 2018-04-13 15:58 /user/hive/warehouse/gamedw.db/cust_copy/part-00001-8e3d26e5-5b38-4308-b631-9815f6730acc-c000
drwxr-xr-x - root supergroup 0 2018-04-13 11:50 /user/hive/warehouse/gamedw.db/cust
-rwxr-xr-x 1 root supergroup 96 2018-04-11 17:14 /user/hive/warehouse/gamedw.db/cust/customers.txt
-rwxr-xr-x 1 root supergroup 10 2018-04-13 11:50 /user/hive/warehouse/gamedw.db/cust/part-00000-ebb85cb3-73e4-4d7b-aa07-8f007c8887bb-c000
导出数据:
如果表的数据文件刚好是需要的格式,直接在hdfs上拷贝数据即可
否则
insert overwrite local directory '/root/custtmp' select * from tablename;
查询
employees表导入数据:
CREATE TABLE `employees`(
`name` string,
`salary` float,
`subdinates` array<string>,
`deducation` map<string,float>,
`address` struct<street:string,city:string,state:string,zip:int>)
[root@host tmpdata]# cat -A employees.txt
tianyongtao^A100^Awang^BZHANG^BLIU^Aaaa^C10^Bbb^C5^BCC^C8^AHENAN^BLUOHE^BLINYING^BTAICHEN$
wangyangming^A200^Ama^Bzhong^Aaaa^C6^Bbb^C12^Ahunan^Bchangsha$
[root@host tmpdata]# hdfs dfs -put employees.txt /user/hive/warehouse/gamedw.db/employees
hive> select * from employees;
OK
employees.name employees.salary employees.subdinates employees.deducation employees.address
tianyongtao 100.0 ["wang","ZHANG","LIU"] {"aaa":10.0,"bb":5.0,"CC":8.0} {"street":"HENAN","city":"LUOHE","state":"LINYING","zip":null}
wangyangming 200.0 ["ma","zhong"] {"aaa":6.0,"bb":12.0} {"street":"hunan","city":"changsha","state":null,"zip":null}
Time taken: 0.14 seconds, Fetched: 2 row(s)
hive> select name,salary,subdinates[0] subdinate1,deducation["bb"] bb,address.city from employees;
OK
name salary subdinate1 bb city
tianyongtao 100.0 wang 5.0 LUOHE
wangyangming 200.0 ma 12.0 changsha
Time taken: 0.134 seconds, Fetched: 2 row(s)
数组索引是基于0的;map使用的是键值;引用结构体的一个元素使用的是的 结构体名.属性名 如上例中的address.city
hive> select name,salary,subdinates[2] subdinate1,deducation["cc"] cc,address.city from employees;
OK
name salary subdinate1 cc city
tianyongtao 100.0 LIU NULL LUOHE
wangyangming 200.0 NULL NULL changsha
Time taken: 0.123 seconds, Fetched: 2 row(s)
数据根据索引找不到则返回null,map同理;
hive> select * from employees where address.city='LUOHE';
OK
employees.name employees.salary employees.subdinates employees.deducation employees.address
tianyongtao 100.0 ["wang","ZHANG","LIU"] {"aaa":10.0,"bb":5.0,"CC":8.0} {"street":"HENAN","city":"LUOHE","state":"LINYING","zip":null}
Time taken: 0.126 seconds, Fetched: 1 row(s)
hive> select * from employees where deducation["bb"]=12;
OK
employees.name employees.salary employees.subdinates employees.deducation employees.address
wangyangming 200.0 ["ma","zhong"] {"aaa":6.0,"bb":12.0} {"street":"hunan","city":"changsha","state":null,"zip":null}
Time taken: 0.125 seconds, Fetched: 1 row(s)
HQL语句中用到的双引号,在spark需要使用转义字符
scala> hivecon.sql("select upper(name) Uname,lower(name) lname,salary-deducation[\"aaa\"]-deducation[\"bb\"] sal from gamedw.employees").show
+------------+------------+-----+
| Uname| lname| sal|
+------------+------------+-----+
| TIANYONGTAO| tianyongtao| 85.0|
|WANGYANGMING|wangyangming|182.0|
+------------+------------+-----+
hive> select upper(name) Uname,lower(name) lname,salary-deducation["aaa"]-deducation["bb"] sal from employees;
OK
uname lname sal
TIANYONGTAO tianyongtao 85.0
WANGYANGMING wangyangming 182.0
Time taken: 0.124 seconds, Fetched: 2 row(s)
函数
scala> hivecon.sql(" select round(5.66) round,floor(8.55) floor,ceil(8.55) ceil,rand() rand,exp(8) exp,ln(16) ln,log10(100) log10,log2(5) log2,power(10,2) power,sqrt(100) sqrt,bin(5) bin,hex(10) hex,hex(9) hex1,abs(-100) abs,pmod(1,5) pmod,negative(-10) negative").show
+-----+-----+----+------------------+------------------+-----------------+-----+-----------------+-----+----+---+---+----+---+----+--------+
|round|floor|ceil| rand| exp| ln|log10| log2|power|sqrt|bin|hex|hex1|abs|pmod|negative|
+-----+-----+----+------------------+------------------+-----------------+-----+-----------------+-----+----+---+---+----+---+----+--------+
| 6| 8| 9|0.4827320089704821|2980.9579870417283|2.772588722239781| 2.0|2.321928094887362|100.0|10.0|101| A| 9|100| 1| 10|
+-----+-----+----+------------------+------------------+-----------------+-----+-----------------+-----+----+---+---+----+---+----+--------+
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
其数值约为(小数点后100位):“e ≈ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274”。
hive函数exp(double d)返回e的d幂次方;
hive> select exp(1) exp1,exp(2) exp2,exp(8) exp8;
OK
exp1 exp2 exp8
2.718281828459045 7.38905609893065 2980.9579870417283
Time taken: 0.545 seconds, Fetched: 1 row(s)
hive函数ln(double d)返回以自然数e为底d的对数
hive> select ln(7.38905609893065);
OK
_c0
2.0
Time taken: 0.136 seconds, Fetched: 1 row(s)
log10(double d)返回以10为底d的对数;log2(double d)返回以2为底d的对数,log(double base,double d)返回以base为底d的对数
hive> select log10(100),power(10,2),log2(8),power(2,3),log(2,16);
OK
_c0 _c1 _c2 _c3 _c4
2.0 100.0 3.0 8.0 4.0
Time taken: 0.164 seconds, Fetched: 1 row(s)
bin(double i) 计算二进制i的string类型值,i是bigint类型;
hive> select bin(7),bin(5);
OK
_c0 _c1
111 101
Time taken: 0.147 seconds, Fetched: 1 row(s)
hex(bigint i) 计算十六进制i的string类型值,i是bigint类型
说明:如果变量是int类型,那么返回a的十六进制表示;如果变量是string类型,则返回该字符串的十六进制表示
hive> select hex(15),hex(9),hex(10),hex(31);
OK
_c0 _c1 _c2 _c3
F 9 A 1F
Time taken: 0.141 seconds, Fetched: 1 row(s)
conv(BIGINT num, int from_base, int to_base)
将数值num从from_base进制转化到to_base进制
hive> select conv(17,10,16);
OK
_c0
11
Time taken: 0.156 seconds, Fetched: 1 row(s)
语法: pmod(int a, int b),pmod(double a, double b)
返回值: int double
说明:返回正的a除以b的余数
hive> select pmod(8,3);
OK
_c0
2
Time taken: 0.549 seconds, Fetched: 1 row(s)
negative 负的
positive 正数
hive> select positive(-10),positive(10),negative(-10),negative(10);
OK
_c0 _c1 _c2 _c3
-10 10 10 -10
Time taken: 0.158 seconds, Fetched: 1 row(s)
hive> select e(),pi();
OK
_c0 _c1
2.718281828459045 3.141592653589793
Time taken: 0.144 seconds, Fetched: 1 row(s)
聚合函数
scala> hivecon.sql("select city,count(1),round(avg(age)) from gamedw.customers group by city").show
+---------+--------+----------------------------------+
| city|count(1)|round(avg(CAST(age AS BIGINT)), 0)|
+---------+--------+----------------------------------+
| wuhan| 7| 56.0|
| qingdao| 8| 49.0|
| beijing| 6| 48.0|
| luohe| 1| 5.0|
|guangzhen| 8| 49.0|
| nanjing| 7| 56.0|
| kaifeng| 8| 49.0|
| shenzhen| 6| 48.0|
+---------+--------+----------------------------------+
count(*) 统计所有行数,包括null值的行
count(exp) 统计exp表达式为非null的行数
scala> hivecon.sql("select sum(age),sum(distinct age) from gamedw.customers").show
+--------+-----------------+
|sum(age)|sum(DISTINCT age)|
+--------+-----------------+
| 2550| 395|
+--------+-----------------+
scala> hivecon.sql("select sum(age),sum(distinct age),avg(age),avg(distinct age) from gamedw.customers").show
+--------+-----------------+--------+-----------------+
|sum(age)|sum(DISTINCT age)|avg(age)|avg(DISTINCT age)|
+--------+-----------------+--------+-----------------+
| 2550| 395| 50.0| 49.375|
+--------+-----------------+--------+-----------------+
表生产函数:
explode 可以接受数组和map参数
hive> select * from employees;
OK
employees.name employees.salary employees.subdinates employees.deducation employees.address
tianyongtao 100.0 ["wang","ZHANG","LIU"] {"aaa":10.0,"bb":5.0,"CC":8.0} {"street":"HENAN","city":"LUOHE","state":"LINYING","zip":null}
wangyangming 200.0 ["ma","zhong"] {"aaa":6.0,"bb":12.0} {"street":"hunan","city":"changsha","state":null,"zip":null}
Time taken: 0.114 seconds, Fetched: 2 row(s)
hive> select explode(subdinates) from employees;
OK
col
wang
ZHANG
LIU
ma
zhong
Time taken: 0.118 seconds, Fetched: 5 row(s)
hive> select explode(subdinates),explode(deducation) from employees;
FAILED: SemanticException 1:28 Only a single expression in the SELECT clause is supported with UDTF's. Error encountered near token 'deducation'
hive> select explode(deducation) from employees;
OK
key value
aaa 10.0
bb 5.0
CC 8.0
aaa 6.0
bb 12.0
Time taken: 0.115 seconds, Fetched: 5 row(s)
hive> select explode(address) from employees;
FAILED: UDFArgumentException explode() takes an array or a map as a parameter
json
hive> select get_json_object('{"store":{"fruit":[{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}],"bicycle":{"price":19.951,"color":"red1"}},"email":"amy@only_for_json_udf_test.net","owner":"amy1"}', '$.store.fruit.type');
OK
_c0
["apple","pear"]
Time taken: 0.147 seconds, Fetched: 1 row(s)
parse_url
hive> select parse_url('http://data.zqgame.com:3689/Report/ad_main_bydate_shouyou.aspx?adcode=256004296705&gameid=3004&sdate=20180101&edate=20180123','QUERY');
OK
_c0
adcode=256004296705&gameid=3004&sdate=20180101&edate=20180123
Time taken: 0.143 seconds, Fetched: 1 row(s)
hive> select parse_url('http://data.zqgame.com:3689/Report/ad_main_bydate_shouyou.aspx?adcode=256004296705&gameid=3004&sdate=20180101&edate=20180123','QUERY','gameid');
OK
_c0
3004
Time taken: 0.139 seconds, Fetched: 1 row(s)
hive> select parse_url('http://data.zqgame.com:3689/Report/ad_main_bydate_shouyou.aspx?adcode=256004296705&gameid=3004&sdate=20180101&edate=20180123','HOST');
OK
_c0
data.zqgame.com
Time taken: 0.14 seconds, Fetched: 1 row(s)
hive> select parse_url('http://data.zqgame.com:3689/Report/ad_main_bydate_shouyou.aspx?adcode=256004296705&gameid=3004&sdate=20180101&edate=20180123','PATH');
OK
_c0
/Report/ad_main_bydate_shouyou.aspx
Time taken: 0.146 seconds, Fetched: 1 row(s)
其他内置函数
hive> select instr('aggggaaeg','aa'),length('aaaggg1111'),locate('aa','aggggaaeg'),lower('aaaA'),lcase('aaaA'),upper('aggefR');
OK
_c0 _c1 _c2 _c3 _c4 _c5
6 10 6 aaaa aaaa AGGEFR
Time taken: 0.14 seconds, Fetched: 1 row(s)
hive> select cast('10' as int),ascii('a'),ascii(1),concat('how','are','you'),concat_ws(' ','how','are','you'),find_in_set('a','dgeage'),find_in_set('a','ggg,a,b'),format_number(20.25466,2);
OK
_c0 _c1 _c2 _c3 _c4 _c5 _c6 _c7
10 97 49 howareyou how are you 0 2 20.25
scala> hivecon.sql("select lpad('aaaa',10,'bb'),lpad('aaaa',5,'bb'),ltrim(' aafdf'),repeat('55',5),space(10)").show
+------------------+-----------------+-------------+-------------+----------+
|lpad(aaaa, 10, bb)|lpad(aaaa, 5, bb)|ltrim( aafdf)|repeat(55, 5)| space(10)|
+------------------+-----------------+-------------+-------------+----------+
| bbbbbbaaaa| baaaa| aafdf| 5555555555| |
+------------------+-----------------+-------------+-------------+----------+
hive> select * from employees;
OK
employees.name employees.salary employees.subdinates employees.deducation employees.address
tianyongtao 100.0 ["wang","ZHANG","LIU"] {"aaa":10.0,"bb":5.0,"CC":8.0} {"street":"HENAN","city":"LUOHE","state":"LINYING","zip":null}
wangyangming 200.0 ["ma","zhong"] {"aaa":6.0,"bb":12.0} {"street":"hunan","city":"changsha","state":null,"zip":null}
Time taken: 0.103 seconds, Fetched: 2 row(s)
hive> select name,size(subdinates),size(deducation) from employees;
OK
name c1 c2
tianyongtao 3 3
wangyangming 2 2
Time taken: 0.106 seconds, Fetched: 2 row(s)
字符串装换为map:
hive> select str_to_map("gameid-100,name-'jzry'",',','-')
> ;
OK
_c0
{"gameid":"100","name":"'jzry'"}
Time taken: 0.146 seconds, Fetched: 1 row(s)
hive> select from_unixtime( unix_timestamp(),'yyyyMMdd'), from_unixtime( unix_timestamp()),unix_timestamp(),unix_timestamp('2018-04-18','yyyy-MM-dd');
unix_timestamp(void) is deprecated. Use current_timestamp instead.
unix_timestamp(void) is deprecated. Use current_timestamp instead.
unix_timestamp(void) is deprecated. Use current_timestamp instead.
OK
_c0 _c1 _c2 _c3
20180418 2018-04-18 15:13:37 1524035617 1523980800
Time taken: 0.178 seconds, Fetched: 1 row(s)
hive> select current_timestamp(),year(current_timestamp()),month(current_timestamp()),day(current_timestamp()),hour(current_timestamp()),second(current_timestamp());
OK
_c0 _c1 _c2 _c3 _c4 _c5
2018-04-18 15:17:11.882 2018 4 18 15 11
Time taken: 0.133 seconds, Fetched: 1 row(s)
hive> select weekofyear(current_timestamp()),date_add(current_timestamp(),2),datediff('2018-01-01',current_timestamp());
OK
_c0 _c1 _c2
16 2018-04-20 -107
Time taken: 0.139 seconds, Fetched: 1 row(s)
查看前三行和mysql基本一样
hive> select * from cust limit 3;
OK
cust.custname cust.sex cust.nianling
tianyt_touch100 1 50
wangwu 1 85
zhangsan 1 20
Time taken: 0.109 seconds, Fetched: 3 row(s)
嵌套查询
hive> from (select * from cust) e select e.nianling where e.nianling>50;
OK
e.nianling
85
56
100
Time taken: 0.109 seconds, Fetched: 3 row(s)
case when 基本和mysql同
hive> select custname,case when nianling>80 then 'old' else 'young' end ifold from cust;
OK
custname ifold
tianyt_touch100 young
wangwu old
zhangsan young
liuqin young
wangwu young
liuyang young
hello old
nihao young
Time taken: 0.097 seconds, Fetched: 8 row(s)
like 和 Rlike
hive> select * from cust where custname like '%nihao%';
OK
cust.custname cust.sex cust.nianling
nihao 1 5
Time taken: 0.104 seconds, Fetched: 1 row(s)
hive> select * from cust where custname Rlike '.*(wang|nihao).*';
OK
cust.custname cust.sex cust.nianling
wangwu 1 85
wangwu 0 47
nihao 1 5
Time taken: 0.089 seconds, Fetched: 3 row(s)
Rlike后面的字符串表达式,字符串中的点号(.)表示可以和任何字符匹配,*重复左边的字符串(上例中为点号)0次到无数次;表达式(x|y)表示和x或者y匹配
group by having 同mysql
inner join on 同mysql
a , b ,c三个表关联,通常情况下,hive对每对join连接生产一个mapreduce,hive按照从左到右执行,因此a,b生成一个mapreduce job,然后将mapreduce的结果与表连接生成一个mapreduce job.
join 的优化
当3个或者以上的表join连接时,如果每个连接都使用相同的连接键时,那么只会产生一个mapreduce job;
hive同时假定最后连接的表是最大的那张表,在对每行记录进行连接操作时,他会尝试将其他表缓存起来,然后扫描最后的表进行计算,因此连续查询的表的大小从左到右是依次增加的。
hive也提供了一个标记来提示查询优化器哪一张表大表 select /*+streamtable(b)*/ 其中b就是最大那张表
scala> hivecon.sql("select /*+streamtable(b)*/ a.sexname,b.custname from gamedw.tbsex a inner join gamedw.cust b on a.id=b.sex").show
left out join
right out join
left semi join 左半开连接 返回左边表的记录,前提条件是后边表满足on条件
hive 不支右半开连接
join 没有 on 则生成 笛卡尔积。
map-side join 如果所有表中只有一张小表,那么可以在最大的表通过mapper的时候将小表放入内存。hive可以在map端执行连接过程,这是因为hive可以与内存中的小表逐一匹配,从而忽略掉连接时需要的reduce过程。想用这个优化,则可以通过添加一个标记来进行触发。 select /*+mapjoin(d)*/...... 启动d代表写入内存的小表
scala> hivecon.sql("select /*+mapjoin(a)*/ a.sexname,b.custname from gamedw.tbsex a inner join gamedw.cust b on a.id=b.sex").show
order by 与 sort by
order by 同其他sql ;sort by 只会在每个reducer中对数据进行排序,也就是执行局部排序,这样可以保证每个reducer数据结果都是有序的,可以提高后面全局排序的效率。
含有sort by 的 distribute by
distribute by控制map的输出在reducer中是如何划分的。mpreduce job中出传输的数据都是按照键值对进行组织的,hive再将语句转换为mpreduce job时,其内部必须使用这个功能。
默认情况下,mpreduce计算框架会根据map输入的键计算响应的哈希值,然后按照得到的哈希值将键值对均匀发到多个reducer中,不幸的是,意味着当我们使用sort by 时,不同的reducer输出的内容会有明显的重叠。如果我们想将相同性别的数据一起处理,我们使用distribute by来保证将性别相同的记录发到同一个reducer中进行处理,然后使用sort by 按我们期望的对数据进行排序。
scala> hivecon.sql("select * from gamedw.cust distribute by sex sort by sex").show
hive 要求distribute by 要在sort by前面
scala> hivecon.sql("select * from gamedw.cust cluster by sex").show
cluster by 等价于distribute by +sort by
类型转换
可以将binary类型转换为字符串,也可以将字符串转为binary
分桶表 对于每一个表或者是分区,Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive是针对某一列进行分桶。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶中。分桶的好处是可以获得更高的查询处理效率。使取样更高效。
使用CLUSTERED BY子句指定使用哪一个列来划分桶和要划分的桶的个数。
hive> create table tb_bucket(id int,name string) clustered by(id) sorted by(name) into 5 buckets ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n' ;
OK
Time taken: 0.22 seconds
scala> hivecon.sql("insert overwrite table gamedw.tb_bucket select nianling,custname from gamedw.cust").show
++
||
++
++
hive> select * from tb_bucket;
OK
tb_bucket.id tb_bucket.name
50 tianyt_touch100
85 wangwu
20 zhangsan
56 liuqin
47 wangwu
32 liuyang
100 hello
1001 mahuateng
5 nihao
drwx-wx-wx - root supergroup 0 2018-04-20 14:38 /user/hive/warehouse/gamedw.db/tb_bucket
-rwx-wx-wx 1 root supergroup 82 2018-04-20 14:38 /user/hive/warehouse/gamedw.db/tb_bucket/part-00000-b5147761-6fcf-4810-aa9b-2e0cbead8eee-c000
-rwx-wx-wx 1 root supergroup 15 2018-04-20 14:38 /user/hive/warehouse/gamedw.db/tb_bucket/part-00001-b5147761-6fcf-4810-aa9b-2e0cbead8eee-c000
-rwx-wx-wx 1 root supergroup 8 2018-04-20 14:38 /user/hive/warehouse/gamedw.db/tb_bucket/part-00002-b5147761-6fcf-4810-aa9b-2e0cbead8eee-c000
[root@host ~]# hdfs dfs -cat /user/hive/warehouse/gamedw.db/tb_bucket/part-00000-b5147761-6fcf-4810-aa9b-2e0cbead8eee-c000
50 tianyt_touch100
85 wangwu
20 zhangsan
56 liuqin
47 wangwu
32 liuyang
100 hello
[root@host ~]# hdfs dfs -cat /user/hive/warehouse/gamedw.db/tb_bucket/part-00001-b5147761-6fcf-4810-aa9b-2e0cbead8eee-c000
1001 mahuateng
[root@host ~]# hdfs dfs -cat /user/hive/warehouse/gamedw.db/tb_bucket/part-00002-b5147761-6fcf-4810-aa9b-2e0cbead8eee-c000
5 nihao
抽样查询
分桶抽样 我么可以使用rand()进行抽样,这个函数返回一个随机值。
hive> select * from tb_bucket tablesample(bucket 3 out of 5 on rand()) s;
OK
s.id s.name
20 zhangsan
32 liuyang
100 hello
5 nihao
Time taken: 0.099 seconds, Fetched: 4 row(s)
hive> select * from tb_bucket tablesample(bucket 3 out of 5 on rand()) s;
OK
s.id s.name
Time taken: 0.102 seconds
hive> select * from tb_bucket tablesample(bucket 3 out of 5 on rand()) s;
OK
s.id s.name
50 tianyt_touch100
Time taken: 0.103 seconds, Fetched: 1 row(s)
我们也可以根据指定列而非rand()进行分桶,那么同一个语句执行n次,返回结果相同。
hive> select * from tb_bucket tablesample(bucket 3 out of 5 on id) s;
OK
s.id s.name
47 wangwu
32 liuyang
Time taken: 0.111 seconds, Fetched: 2 row(s)
hive> select * from tb_bucket tablesample(bucket 3 out of 5 on id) s;
OK
s.id s.name
47 wangwu
32 liuyang
Time taken: 0.101 seconds, Fetched: 2 row(s)
hive> select * from tb_bucket tablesample(bucket 3 out of 5 on id) s;
OK
s.id s.name
47 wangwu
32 liuyang
Time taken: 0.129 seconds, Fetched: 2 row(s)
Hive中分桶表取样的语法是:
table_sample: TABLESAMPLE (BUCKET x OUT OF y [ON colname])
分桶语句中分母(y)表示的是数据将会被散列的个数,而分子(x)表示将会选择桶的个数。
我们也可以使用分桶语句对非分桶表进行分桶抽样
hive> select * from t_name tablesample(bucket 3 out of 5 on rand()) s;
OK
s.id s.name s.level
4 堂哥 2
6 堂妹 3
Time taken: 0.108 seconds, Fetched: 2 row(s)
hive> select * from t_name tablesample(bucket 3 out of 5 on rand()) s;
OK
s.id s.name s.level
1 爷爷 1
2 大爷 1
3 叔叔 1
Time taken: 0.102 seconds, Fetched: 3 row(s)
数据块抽样
这是另一种按百分比抽样的方式,基于行数;
hive> select * from t_name tablesample(10 percent) s;
OK
s.id s.name s.level
1 爷爷 1
2 大爷 1
Time taken: 0.096 seconds, Fetched: 2 row(s)
hive> select * from t_name tablesample(5 rows) s;
OK
s.id s.name s.level
1 爷爷 1
2 大爷 1
3 叔叔 1
4 堂哥 2
5 堂姐 2
Time taken: 0.11 seconds, Fetched: 5 row(s)
hive> select * from t_name tablesample(5m) s;
OK
s.id s.name s.level
1 爷爷 1
2 大爷 1
3 叔叔 1
4 堂哥 2
5 堂姐 2
6 堂妹 3
1 爷爷 1
2 大爷 1
3 叔叔 1
4 堂哥 2
5 堂姐 2
6 堂妹 3
Time taken: 0.098 seconds, Fetched: 12 row(s)
hive> select * from t_name tablesample(5k) s;
OK
s.id s.name s.level
1 爷爷 1
2 大爷 1
3 叔叔 1
4 堂哥 2
5 堂姐 2
6 堂妹 3
1 爷爷 1
2 大爷 1
3 叔叔 1
4 堂哥 2
5 堂姐 2
6 堂妹 3
Time taken: 0.2 seconds, Fetched: 12 row(s)
hive> select * from t_name tablesample(5b) s;
OK
s.id s.name s.level
1 爷爷 1
Time taken: 0.153 seconds, Fetched: 1 row(s)
union all
可以将2个以及2个以上的表进行合并,查询的列个数以及对应的数据类型必须一致
scala> hivecon.sql("select custname,sex from gamedw.cust1 union all select custname,nianling from gamedw.cust").show
HiveQL 视图
可以降低查询复杂度,可以限制基于条件的过滤数据
视图可以指定字段名 create view viewname(fieldname,......) as ..........,当然也可以省掉 (fieldname,......)
hive> select * from employees;
OK
employees.name employees.salary employees.subdinates employees.deducation employees.address
tianyongtao 100.0 ["wang","ZHANG","LIU"] {"aaa":10.0,"bb":5.0,"CC":8.0} {"street":"HENAN","city":"LUOHE","state":"LINYING","zip":null}
wangyangming 200.0 ["ma","zhong"] {"aaa":6.0,"bb":12.0} {"street":"hunan","city":"changsha","state":null,"zip":null}
Time taken: 0.114 seconds, Fetched: 2 row(s)
hive> create view view_emp(aa,bb,city,name) as select deducation['aaa'],deducation['bb'],address.city,name from employees;
OK
_c0 _c1 city name
Time taken: 0.106 seconds
hive> select * from view_emp;
OK
view_emp.aa view_emp.bb view_emp.city view_emp.name
10.0 5.0 LUOHE tianyongtao
6.0 12.0 changsha wangyangming
Time taken: 0.142 seconds, Fetched: 2 row(s)
索引
hive索引功能有限,但仍然可以加速一些操作,一张表的索引数据存放在另一张表中;可以通过explain命令查看语句是否使用了索引;
当逻辑分区太多的时候,建立索引就成为分区的另一种选择;索引会增加存储空间,建立索引也会消耗计算资源;
hive> create index ix_t_name_id on table t_name(id) as 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' with deferred rebuild in table t_name_index;
OK
Time taken: 0.37 seconds
----------------------
create index ix_t_name_id 索引名
on table t_name(id) t_name为表名
as 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' 创建索引需要的实现类
with deferred rebuild
in table t_name_index; 创建索引后的表名
加载索引数据(重建索引)
lter index ix_t_name_id on t_name rebuild;
查看表的索引
hive> show index on t_name;
OK
idx_name tab_name col_names idx_tab_name idx_type comment
ix_t_name_id t_name id t_name_index compact
Time taken: 0.036 seconds, Fetched: 1 row(s)
删除索引
hive> drop index if exists ix_t_name_id on t_name;
OK
Time taken: 2.467 seconds
hive> show index on t_name;
OK
idx_name tab_name col_names idx_tab_name idx_type comment
Time taken: 0.03 seconds
模式设计
按天划分的表就是一种模式,在hive中可以使用按天分区;
分区可以优化查询,但也可能导致一些不利,分区多,每个分区文件太多就会对超出namenode信息处理能力,因为namenode会将所有系统文件的元数据的保存在内存中。
因此一个理想的分区方案应该是不会产生过多的分区和文件夹目录,并且每个文件夹的文件应该足够大,应该是文件系统块大小的若干倍。
按时间分区的策略应该是以不同的时间粒度来确定合适大小的数据积累量,随着时间的推移,分区数量的增长是均匀的,而且每个分区下的文件的大小应该是文件系统中块的若干倍。
这样可以保持是分区足够大,从而优化一般查询的数据吞吐量。同时要考虑粒度在将来是否是适用的。
另一种方案就是适用两个级别的分区,并且适用不同的维度。如时间+地区
唯一键和标准化
关系数据库通常适用唯一键,索引和标准化来存储数据集。hive没有主键,应尽量避免对非标准化数据进行连接操作(join);复杂的数据类型array map struct有助于单行存储一对多的数据;
同一种数据多种处理
可以从一个数据源产生多种聚合,而无需每次聚合都要重新扫描一次
hive > from table1
> INSERT OVERWRITE TABLE2 select * where action='xx1'
> INSERT OVERWRITE TABLE3 select * where action='xx2';
对于每个表的分区
ETL过程中,如果中间表也使用分区,一次可以处理多个分区的数据,缺点就是要管理中间表并删除旧分区
分桶表数据存储
分区提供了一个隔离数据,优化查询的方式;分桶是将数据分解成更容易管理的若干部分的技术
假定一个表按日期 用户ID分区,用户过多,会导致出现非常多的分区,可能超出文件系统的处理能力;如果我们按照日期分区,按用户ID分桶,则字段值则会根据用户指定的值哈希分发到桶中;同一个用户ID通常会存储到同一个桶内;为了能正确的填充表,首先我们应该设置一个属性来强制hive为目标表的分桶初始化过程设置一个正确的reducer个数。
建表:
hive> show create table tb_bucket;
OK
createtab_stmt
CREATE TABLE `tb_bucket`(
`userid` int,
`log` string)
PARTITIONED BY (
`dateid` int)
CLUSTERED BY (
userid)
INTO 5 BUCKETS
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES (
'field.delim'='\t',
'line.delim'='\n',
'serialization.format'='\t')
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket'
TBLPROPERTIES (
'transient_lastDdlTime'='1524555904')
Time taken: 0.02 seconds, Fetched: 22 row(s)
导入数据
hive> set hive.enforce.bucketing=true;
load data local inpath '/root/tmpdata/userlog.txt' into table tb_bucket partition(dateid=20180223);
drwx-wx-wx - root supergroup 0 2018-04-24 15:53 /user/hive/warehouse/gamedw.db/tb_bucket
drwx-wx-wx - root supergroup 0 2018-04-24 15:54 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223
-rwx-wx-wx 1 root supergroup 162285 2018-04-24 15:54 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/userlog.txt
抽样检查
hive> select * from gamedw.tb_bucket tablesample(bucket 5 out of 5 on userid) where userid=1285962;
OK
tb_bucket.userid tb_bucket.log tb_bucket.dateid
Time taken: 0.135 seconds
hive> select * from gamedw.tb_bucket tablesample(bucket 4 out of 5 on userid) where userid=1285962;
OK
tb_bucket.userid tb_bucket.log tb_bucket.dateid
Time taken: 0.13 seconds
hive> select * from gamedw.tb_bucket tablesample(bucket 3 out of 5 on userid) where userid=1285962;
OK
tb_bucket.userid tb_bucket.log tb_bucket.dateid
1285962 219 20180223
1285962 0 20180223
1285962 29 20180223
1285962 16 20180223
1285962 13 20180223
1285962 0 20180223
1285962 8 20180223
1285962 11 20180223
1285962 8 20180223
1285962 5 20180223
1285962 6 20180223
1285962 7 20180223
1285962 1 20180223
1285962 6 20180223
1285962 14 20180223
1285962 26 20180223
1285962 32 20180223
1285962 3 20180223
1285962 1 20180223
1285962 4 20180223
1285962 165 20180223
Time taken: 0.123 seconds, Fetched: 21 row(s)
hive> select * from gamedw.tb_bucket tablesample(bucket 2 out of 5 on userid) where userid=1285962;
OK
tb_bucket.userid tb_bucket.log tb_bucket.dateid
Time taken: 0.107 seconds
hive> select * from gamedw.tb_bucket tablesample(bucket 1 out of 5 on userid) where userid=1285962;
OK
tb_bucket.userid tb_bucket.log tb_bucket.dateid
Time taken: 0.139 seconds
分桶的优点,桶是固定的,没有数据的波动,利于数据抽样
为表增加列
alter table tbname add columns(colname type);
几乎总是使用压缩
调优
使用explain
explain extended 可以数据更多信息
join 的优化,大表要么放在最后边,要么使用 /*streamtable(tbname)*/标注,等
本地模式,输入数据量非常小,hive通过本地单台计算机处理所有任务,执行时间明显缩短
set hive.exec.mode.local.auto=true;
并行执行
hive> set hive.exec.parallel=true;
严格模式
调整maper reducer的个数
索引
动态分区调整
存档分区
hive有一种存储格式是har(hadoop archive)hadoop归档文件,har像hdfs系统中tar文件一样,是一个单独的文件,其内部可以存放多个文件和文件夹,某个特定分区,老旧文件访问比较低,当数量庞大,那就会需要hdfs的namenode消耗非常大的代价来管理这些文件。通过将分区下的文件归档成一个大的,但同时可以被HIVE访问的文件,可以减轻namenode的压力,缺点是har查询效率不高,也不是压缩文件,不能节省空间。
首先将hadoop的archive接口拷贝到$HIVE_HOME/auxlib目录下
[root@host lib]# mkdir $HIVE_HOME/auxlib
[root@host lib]# cp hadoop-archives-2.7.4.jar $HIVE_HOME/auxlib
[root@host lib]# pwd
/root/hadoop/hadoop-2.7.4/share/hadoop/tools/lib
查看归档分区的文件
drwx-wx-wx - root supergroup 0 2018-04-25 11:10 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223
-rwx-wx-wx 1 root supergroup 190 2018-04-25 11:04 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/log.txt
-rwx-wx-wx 1 root supergroup 162285 2018-04-24 15:54 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/userlog.txt
重启hive
hive> set hive.archive.enabled=true;
hive> alter table tb_bucket archive partition (dateid=20180223);
intermediate.archived is hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223_INTERMEDIATE_ARCHIVED
intermediate.original is hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223_INTERMEDIATE_ORIGINAL
Creating data.har for hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223
in hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/.hive-staging_hive_2018-04-25_11-18-41_670_3770144429856467164-1/-ext-10000/partlevel
Please wait... (this may take a while)
Moving hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/.hive-staging_hive_2018-04-25_11-18-41_670_3770144429856467164-1/-ext-10000/partlevel to hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223_INTERMEDIATE_ARCHIVED
Moving hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223 to hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223_INTERMEDIATE_ORIGINAL
Moving hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223_INTERMEDIATE_ARCHIVED to hdfs://localhost:9000/user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223
OK
Time taken: 3.562 seconds
查看归档文件
drwxr-xr-x - root supergroup 0 2018-04-25 11:18 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223
drwxr-xr-x - root supergroup 0 2018-04-25 11:18 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/data.har
-rw-r--r-- 1 root supergroup 0 2018-04-25 11:18 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/data.har/_SUCCESS
-rw-r--r-- 5 root supergroup 380 2018-04-25 11:18 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/data.har/_index
-rw-r--r-- 5 root supergroup 22 2018-04-25 11:18 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/data.har/_masterindex
-rw-r--r-- 1 root supergroup 162475 2018-04-25 11:18 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/data.har/part-0
下面命令将har中的文件提取出来重新发在hdfs中
hive> alter table tb_bucket unarchive partition (dateid=20180223);
查看文件(多了一个空文件夹.hive-staging_hive_2018-04-25_11-18-41_670_3770144429856467164-1):
drwx-wx-wx - root supergroup 0 2018-04-25 11:21 /user/hive/warehouse/gamedw.db/tb_bucket
drwxr-xr-x - root supergroup 0 2018-04-25 11:21 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223
drwxr-xr-x - root supergroup 0 2018-04-25 11:21 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/.hive-staging_hive_2018-04-25_11-18-41_670_3770144429856467164-1
-rw-r--r-- 1 root supergroup 190 2018-04-25 11:21 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/log.txt
-rw-r--r-- 1 root supergroup 162285 2018-04-25 11:21 /user/hive/warehouse/gamedw.db/tb_bucket/dateid=20180223/userlog.txt
函数
用户自定义函数UDF,是允许用户可以扩展HQL的强大功能。ETL中,一个过程往往包含多个步骤,hive语言具多重方式将上一个步骤的输入通过管道传递给下一个步骤,然后在一个查询中产生众多输出。
发现和描述函数
hive> show functions; 列出所有当前hive回话中所加载的所有函数名称,包括内置和用户加载进来的函数
desc function 函数名:展示出函数的简单介绍
hive> desc function trim;
OK
tab_name
trim(str) - Removes the leading and trailing space characters from str
Time taken: 0.01 seconds, Fetched: 1 row(s)
hive> desc function extended trim;
OK
tab_name
trim(str) - Removes the leading and trailing space characters from str
Example:
> SELECT trim(' facebook ') FROM src LIMIT 1;
'facebook'
Time taken: 0.005 seconds, Fetched: 4 row(s)
scala> hivecon.sql("select max(userid) from gamedw.tb_bucket ").show
18/04/25 15:34:01 WARN lazy.LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
18/04/25 15:34:01 WARN lazy.LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
18/04/25 15:34:01 WARN lazy.LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
+-----------+
|max(userid)|
+-----------+
| 2265738|
+-----------+
scala> hivecon.sql("select userid,count(1) from gamedw.tb_bucket group by userid").show
18/04/25 15:35:22 WARN lazy.LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
18/04/25 15:35:22 WARN lazy.LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
18/04/25 15:35:22 WARN lazy.LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
+-------+--------+
| userid|count(1)|
+-------+--------+
|2230227| 5|
|2253575| 4|
|2265183| 1|
|2265258| 3|
|2265307| 1|
|2265351| 3|
|2140713| 2|
|2192466| 2|
|2264948| 1|
|2218390| 5|
|2232595| 5|
|2265050| 1|
|2230117| 20|
|1330951| 8|
|2265318| 2|
|2223714| 1|
|2265630| 1|
|2234815| 11|
|1914825| 7|
|2261768| 5|
+-------+--------+
only showing top 20 rows
表生成函数
hive> select explode(subdinates) from employees;
OK
col
wang
ZHANG
LIU
ma
zhong
Time taken: 0.112 seconds, Fetched: 5 row(s)
hive> select name, explode(subdinates) from employees; 无法在表中产生其他列
FAILED: SemanticException [Error 10081]: UDTF's are not supported outside the SELECT clause, nor nested in expressions
不过hive提供了一个lateral view 来实现,lateral view 需要指定视图名称以及生成的列名
hive> select name, sub from employees lateral view explode(subdinates) subview as sub;
OK
name sub
tianyongtao wang
tianyongtao ZHANG
tianyongtao LIU
wangyangming ma
wangyangming zhong
Time taken: 0.1 seconds, Fetched: 5 row(s)
streaming
streaming提供了另一种处理数据的方式,在streaming job中,hadoop streaming api会为外部进程开启一个I/O通道,然后数据会输送给这个进程,其会从标准输入中读取数据,然后通过标准输出来写结果数据,最后返回到streaming api job。
streaming执行效率会 比对应编写的udf或改写的inputformat对象的效率要低,管道中的序列化然后反序列化通常是低效的,而且以通常的方式很难调试整个程序。
hive提供了多种语法来使用steaming,包括map(),reduce(),transform()
恒等变换
最基本的steaming job就是恒等运算,/bin/cat 整个shell命令可以将传递给它的数据直接输出,所以满足恒等运算。
scala> hivecon.sql("select transform(custname,nianling) using '/bin/cat' as name,age from gamedw.cust where nianling>50").show
+---------+----+
| name| age|
+---------+----+
| wangwu| 85|
| liuqin| 56|
| hello| 100|
|mahuateng|1001|
+---------+----+
改变类型
转换为其他数据类型
scala> hivecon.sql("select transform(custname,nianling) using '/bin/cat' as (name STRING,age DOUBLE) from gamedw.cust where nianling>50").show
+---------+------+
| name| age|
+---------+------+
| wangwu| 85.0|
| liuqin| 56.0|
| hello| 100.0|
|mahuateng|1001.0|
+---------+------+
投影变换
使用cut命令提取或者映射出特定的字段
scala> hivecon.sql("select transform(custname,sex,nianling) using '/bin/cut -f1' as name,sex,age from gamedw.cust where nianling>50").show
+---------+----+----+
| name| sex| age|
+---------+----+----+
| wangwu|null|null|
| liuqin|null|null|
| hello|null|null|
|mahuateng|null|null|
+---------+----+----+
操作转换
scala> hivecon.sql("select transform(custname,sex,nianling) using '/bin/cat' as name,sex,age from gamedw.cust where nianling>50").show
+---------+---+----+
| name|sex| age|
+---------+---+----+
| wangwu| 1| 85|
| liuqin| 0| 56|
| hello| 0| 100|
|mahuateng| 1|1001|
+---------+---+----+
scala> hivecon.sql("select transform(custname,sex,nianling) using '/bin/sed s/0/5/' as name,sex,age from gamedw.cust where nianling>50").show
+---------+---+----+
| name|sex| age|
+---------+---+----+
| wangwu| 1| 85|
| liuqin| 5| 56|
| hello| 5| 100|
|mahuateng| 1|1501|
+---------+---+----+
创建表的默认格式是textfile,便于与其他工具共享数据,便于查看和编辑。相对于二进制文件,文本占的空间要大
创建存储格式为sequencefile的表 ,sequencefile是二进制的键值对文件
hive> create table cust00(custname string,sex int,nianling int)stored as sequencefile;
OK
Time taken: 0.139 seconds
csv 逗号分隔值 tsv 制表符分隔值
xml udf
xml是非结构话数据,这使得hive成为xml处理的一个强大的数据库平台 。众多原因之一就是大型xml文档解析和处理所需要的复杂性和资源消耗使得hadoop非常适合成为一个xml数据库平台,因为hadoop可以并行的处理xml文档,hive也成为了处理xml相关数据的完美工具。HiveQL天生就支持访问xml的嵌套元素和值,进一步,可以允许对嵌套的字段,值,属性进行连接操作。xpath xml路径语言,使用xpath作为xml的查询语言的话,hive可以从xml提取数据并进入hive系统进行其他处理;xpath将xml建模成一个节点树。
hive 下篇的更多相关文章
- 一脸懵逼学习Hive的安装(将sql语句翻译成MapReduce程序的一个工具)
Hive只在一个节点上安装即可: 1.上传tar包:这个上传就不贴图了,贴一下上传后的,看一下虚拟机吧: 2.解压操作: [root@slaver3 hadoop]# tar -zxvf hive-0 ...
- Hadoop3集群搭建之——hive添加自定义函数UDF
上篇: Hadoop3集群搭建之——虚拟机安装 Hadoop3集群搭建之——安装hadoop,配置环境 Hadoop3集群搭建之——配置ntp服务 Hadoop3集群搭建之——hive安装 Hadoo ...
- [Hive]HiveServer2配置
HiveServer2(HS2)是一个服务器接口,能使远程客户端执行Hive查询,并且可以检索结果.HiveServer2是HiveServer1的改进版,HiveServer1已经被废弃.HiveS ...
- NiFi使用总结 一 hive到hive的PutHiveStreaming processor和SelectHiveQL
我说实话,NiFi的坑真的挺多的... 1.PutHiveStreaming processor的使用 具体配置可参考:https://community.hortonworks.com/articl ...
- CIA Hive Beacon Infrastructure复现1——使用Apache mod_rewrite实现http流量分发
0x00 前言 2017年11月9日维基解密公布一个代号为Vault8的文档,包含服务器远程控制工具Hive的源代码和开发文档.开发文档中的框架图显示Hive支持流量分发功能,若流量有效,转发至Hon ...
- 基于Docker搭建Hadoop+Hive
为配合生产hadoop使用,在本地搭建测试环境,使用docker环境实现(主要是省事~),拉取阿里云已有hadoop镜像基础上,安装hive组件,参考下面两个专栏文章: 克里斯:基于 Docker 构 ...
- 基于Hive进行数仓建设的资源元数据信息统计:Hive篇
在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据 ...
- 初识Hadoop、Hive
2016.10.13 20:28 很久没有写随笔了,自打小宝出生后就没有写过新的文章.数次来到博客园,想开始新的学习历程,总是被各种琐事中断.一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版 ...
- Asp.Net WebApi核心对象解析(下篇)
在接着写Asp.Net WebApi核心对象解析(下篇)之前,还是一如既往的扯扯淡,元旦刚过,整个人还是处于晕的状态,一大早就来处理系统BUG,简直是坑爹(好在没让我元旦赶过来该BUG),队友挖的坑, ...
随机推荐
- hdu1166 敌兵布阵 树状数组/线段树
数列的单点修改.区间求和 树状数组或线段树入门题 #include<stdio.h> #include<string.h> ],N; void add(int x,int a) ...
- BL老师的建议,数学不好的,大数据一票否决--后赋从java转大数据
__________________________ 作者:我是蛋蛋链接:https://www.zhihu.com/question/59593387/answer/167235075来源:知乎著作 ...
- day43 数据库知识欠缺的
一 什么是存储引擎 mysql中建立的库===>文件夹 库中建立的表===>文件 现实生活中我们用来存储数据的文件有不同的类型,每种文件类型对应各自不同的处理机制:比如处理文本用txt类型 ...
- nexus && minio s3 存储私有镜像
对于新版本的nexus 已经支持s3 存储了(3.12),但是企业内部可能还是需要使用私有部署的 还好我们有minio,具体的介绍就不说了 minio 项目运行 参考项目: https://githu ...
- 升级CentOS 7.4内核版本的三种方案
https://blog.csdn.net/breeze915/article/details/79243673 在实验环境下,已安装了最新的CentOS 7.4操作系统,现在需要升级内核版本. 实验 ...
- http报头 Accept 与 Content-Type 的区别
Accept属于请求头, Content-Type属于实体头. Http报头分为通用报头,请求报头,响应报头和实体报头. 请求方的http报头结构:通用报头|请求报头|实体报头 响应方的http报头结 ...
- 设置新时间校正服务器NTP SERVER
时间校正服务器IP : 10.*.*.* 适用系统:windows server 2008/windows 7 net stop w32time net start w32time w32tm /qu ...
- c#问题(按F1或F2键时触发事件)
this.KeyPreview = true;...private void Form1_KeyDown(object sender, System.Windows.Forms.KeyEventArg ...
- 转 WCF中同步和异步通讯总结
我这样分个类: WCF中, 以同步.异步角度考虑通讯的方式分为四种:跨进程同步.跨进程异步.发送队列端同步.发送队列端异步.之所以造成这样的结果源于两个因素,一个是传统概念上的同异步,一个是对于WCF ...
- jsoncpp构造json字符串和json数组
jsoncpp构造json字符串和json数组 参考文章:Jsoncpp的简单使用 下载json文件夹放在c++项目的include目录下,在CMakeLists中include进去,然后就可以在代码 ...