前言

opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍图像阈值/二值化,坚持学习,共同进步。

系列教程参照OpenCV-Python中文教程

系统环境

系统:win7_x64;

python版本:python3.5.2;

opencv版本:opencv3.3.1;

内容安排

1.知识点介绍;

2.测试代码;

具体内容

1.知识点介绍;

图像的阈值处理一般使得图像的像素值更单一、图像更简单。阈值可以分为全局性质的阈值,也可以分为局部性质的阈值,可以是单阈值的也可以是多阈值的。当然阈值越多是越复杂的。下面将介绍opencv下的三种阈值方法。主要涉及的函数是cv2.threshold , cv2.adaptiveThreshold;

1.1 简单阈值;

简单阈值当然是最简单,选取一个全局阈值,然后把整幅图像分成了非黑即白的二值图像。

使用的函数是cv2.threshold,包括四个参数,第一个是原图像(灰度图像),第二个是进行分类的阈值,第三个是高于(低于)阈值时赋予的新值,第四个是一个方法选择参数,常用的方法有: 
• cv2.THRESH_BINARY(黑白二值) 
• cv2.THRESH_BINARY_INV(黑白二值反转) 
• cv2.THRESH_TRUNC (得到的图像为多像素值) 
• cv2.THRESH_TOZERO 
• cv2.THRESH_TOZERO_INV 
该函数有两个返回值,第一个retVal(得到的分割阈值),第二个就是阈值化后的图像。

ret , thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)

1.2 自适应阈值;

自适应阈值可以看成一种局部性的阈值,通过规定一个区域大小,比较这个点与区域大小里面像素点的平均值(或者其他特征)的大小关系确定这个像素点是属于黑或者白(如果是二值情况)。使用的函数为cv2.adaptiveThreshold,该函数有6个参数,分别是原始灰度图像、像素值上限、自适应方法、赋值方法、邻域大小、常数,其中自适应方法包含cv2.ADAPTIVE_THRESH_MEAN_C (邻域均值)和cv2.ADAPTIVE_THRESH_GAUSSIAN_C(邻域加权和)两种,常数表示阈值等于均值或者加权值减去这个常数;

ret , th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
# 11为block size,2为C值
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C , cv2.THRESH_BINARY,11,2 )

1.3 大津法OTSU;

Otsu方法试图自动找到一个最好的阈值,可以最小化加权的类内方差,并且Otsu非常适合于图像灰度直方图具有双峰的情况,在双峰(bimodal )之间找到一个值作为阈值,对于非双峰图像,可能并不是很好用。

ret2,th2=cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

2.测试代码;

2.1 自适应阈值;

import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread('test.jpg',0)
#中值滤波
img = cv2.medianBlur(img,5) ret , th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
# 11为block size,2为C值
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C , cv2.THRESH_BINARY,11,2 )
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C , cv2.THRESH_BINARY,11,2) titles = ['original image' , 'global thresholding (v=127)','Adaptive mean thresholding',
'adaptive gaussian thresholding']
images = [img,th1,th2,th3] for i in range(4):
plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([]) plt.show()

2.2 OTSU方法;

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('test.jpg',0) ret1,th1=cv2.threshold(img,127,255,cv2.THRESH_BINARY) ret2,th2=cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
#(5,5)为高斯核的大小,0为标准差
blur= cv2.GaussianBlur(img,(5,5),0)#高斯滤波平滑 #阀值一定要设为0
ret3,th3=cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) images=[img,0,th1,
img,0,th2,
img,0,th3]
titles =['original noisy image','histogram','global thresholding(v=127)',
'original noisy image','histogram',"otsu's thresholding",
'gaussian filtered image','histogram',"otus's thresholding"]
#这里使用了pyplot中画直方图的方法,plt.hist要注意的是他的参数是一维数组
#所以这里使用了(numpy)ravel方法,将多维数组转换成一维,也可以使用flatten方法
for i in range(3):
plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
plt.title(titles[i*3]),plt.xticks([]),plt.yticks([])
plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
plt.title(titles[i*3+1]),plt.xticks([]),plt.yticks([])
plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
plt.title(titles[i*3+2]),plt.xticks([]),plt.yticks([]) plt.show()

2.3 OTSU的实现;

#opencv官网https://docs.opencv.org/3.3.1/d7/d4d/tutorial_py_thresholding.html
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('test.jpg',0)
blur = cv2.GaussianBlur(img,(5,5),0)
# find normalized_histogram, and its cumulative distribution function
hist = cv2.calcHist([blur],[0],None,[256],[0,256])
hist_norm = hist.ravel()/hist.max()
Q = hist_norm.cumsum()
bins = np.arange(256)
fn_min = np.inf
thresh = -1
for i in range(1,256):
p1,p2 = np.hsplit(hist_norm,[i]) # probabilities
q1,q2 = Q[i],Q[255]-Q[i] # cum sum of classes
b1,b2 = np.hsplit(bins,[i]) # weights
# finding means and variances
m1,m2 = np.sum(p1*b1)/q1, np.sum(p2*b2)/q2
v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2
# calculates the minimization function
fn = v1*q1 + v2*q2
if fn < fn_min:
fn_min = fn
thresh = i
# find otsu's threshold value with OpenCV function
ret, otsu = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
print( "{} {}".format(thresh,ret) )#ret表示得到的分割阈值;

参考

1.图像阈值

2.CSDN图像阈值

3.opencv官网

opencv-python教程学习系列12-图像阈值的更多相关文章

  1. opencv-python教程学习系列8-opencv图像算术运算

    前言 opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍图像的算术运算,坚持学习,共同进步. 系列教程参照OpenCV-Python中文教程: 系统环境 ...

  2. opencv-python教程学习系列7-opencv图像基本操作

    前言 opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍图像的基本操作,坚持学习,共同进步. 系列教程参照OpenCV-Python中文教程: 系统环境 ...

  3. OpenCV Python教程(1、图像的载入、显示和保存)

    原文地址:http://blog.csdn.net/sunny2038/article/details/9057415 转载请详细注明原作者及出处,谢谢! 本文是OpenCV  2 Computer ...

  4. opencv-python教程学习系列2-读取/显示/保存图像

    前言 opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍图像的读取.显示以及保存,坚持学习,共同进步. 系列教程参照OpenCV-Python中文教程: ...

  5. 《Python爬虫学习系列教程》学习笔记

    http://cuiqingcai.com/1052.html 大家好哈,我呢最近在学习Python爬虫,感觉非常有意思,真的让生活可以方便很多.学习过程中我把一些学习的笔记总结下来,还记录了一些自己 ...

  6. [转]《Python爬虫学习系列教程》

    <Python爬虫学习系列教程>学习笔记 http://cuiqingcai.com/1052.html 大家好哈,我呢最近在学习Python爬虫,感觉非常有意思,真的让生活可以方便很多. ...

  7. opencv-python教程学习系列13-图像平滑

    前言 opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍图像平滑,坚持学习,共同进步. 系列教程参照OpenCV-Python中文教程: 系统环境 系统: ...

  8. opencv-python教程学习系列11-几何变换

    前言 opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍几何变换,坚持学习,共同进步. 系列教程参照OpenCV-Python中文教程: 系统环境 系统: ...

  9. opencv-python教程学习系列10-颜色空间转换

    前言 opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍颜色空间转换,坚持学习,共同进步. 系列教程参照OpenCV-Python中文教程: 系统环境 系 ...

随机推荐

  1. Jmeter 处理Unicode编码转为中文

    对于接口中返回报文,有的接口返回信息是Unicode编码,写断言的时候,要么就Response Assertion就写成Unicode编码的断言,如下图: 真心不觉得返回报文加密能有多安全,别人将报文 ...

  2. MAC下安装npm和node

    Step1: 在官网下载适合mac的版本的nodejs,官网地址https://nodejs.org/en/ Step2: 上述方法我试了,但是不管用.安装完毕且重启均不能显示我安装的版本.哭 下面重 ...

  3. 字符集(编码)转换_Windows

    ZC: 来自 我的项目 czgj ZC: (1).经过测试 MultiByteToWideChar(...) 返回的是 (需要的)WideChar[宽字符]的个数:(2).WideCharToMult ...

  4. 附加题找bug

    private: void ReSize(int sz) { ) { return; } if(maxSize != sz) { T *arr = new T[sz]; if(arr == NULL) ...

  5. flash破解工具/flash decompiler

    如果想比较方便地参观浏览一下flash(swf)文件里面的内容,推荐使用国外免费开源的工具JPEXS Free Flash Decompiler. 传送门:https://www.free-decom ...

  6. robotframework安装与配置--学习第一天

    刚刚入职公司,之前学的是Java+selenium自动化测试,但公司要求使用robot framework,所以找了些资料学习.刚开始觉得为什么不用java.python等开发语言+selenium做 ...

  7. C++数组引用

    C++数组引用 一.数组引用 C++数组的引用:引用即别名这样比指针传地址方便多了 形参中的(&a)[10]可以就看做a数组的别名,肯定要指定数组大小,如果没有后面的数组大小,天知道是变量还是 ...

  8. spring boot: thymeleaf模板引擎使用

    spring boot: thymeleaf模板引擎使用 在pom.xml加入thymeleaf模板依赖 <!-- 添加thymeleaf的依赖 --> <dependency> ...

  9. py to exe —— pywin32

    xu言: 最近研究python,觉得做些windows小工具还挺好玩,就研究了下py代码如何转成exe 这里用到一个工具 pywin32 https://sourceforge.net/project ...

  10. Android开发中需要注意哪些坑

    作为一个有两.三年Android应用开发经验的码农,自然会遇到很多坑,下面是我能够想起的一些坑(实践证明不记笔记可不是个好习惯),后面有想到其它坑会陆续补上. 1.在Android library中不 ...