https://stats385.github.io/readings

Lecture 1 – Deep Learning Challenge. Is There Theory?

Readings

  1. Deep Deep Trouble
  2. Why 2016 is The Global Tipping Point...
  3. Are AI and ML Killing Analyticals...
  4. The Dark Secret at The Heart of AI
  5. AI Robots Learning Racism...
  6. FaceApp Forced to Pull ‘Racist' Filters...
  7. Losing a Whole Generation of Young Men to Video Games

Lecture 2 – Overview of Deep Learning From a Practical Point of View

Readings

  1. Emergence of simple cell
  2. ImageNet Classification with Deep Convolutional Neural Networks (Alexnet)
  3. Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG)
  4. Going Deeper with Convolutions (GoogLeNet)
  5. Deep Residual Learning for Image Recognition (ResNet)
  6. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
  7. Visualizing and Understanding Convolutional Neural Networks

Blogs

  1. An Intuitive Guide to Deep Network Architectures
  2. Neural Network Architectures

Videos

  1. Deep Visualization Toolbox

Lecture 3

Readings

  1. A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
  2. Energy Propagation in Deep Convolutional Neural Networks
  3. Discrete Deep Feature Extraction: A Theory and New Architectures
  4. Topology Reduction in Deep Convolutional Feature Extraction Networks

Lecture 4

Readings

  1. A Probabilistic Framework for Deep Learning
  2. Semi-Supervised Learning with the Deep Rendering Mixture Model
  3. A Probabilistic Theory of Deep Learning

Lecture 5

Readings

  1. Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review
  2. Learning Functions: When is Deep Better Than Shallow

Lecture 6

Readings

  1. Convolutional Patch Representations for Image Retrieval: an Unsupervised Approach
  2. Convolutional Kernel Networks
  3. Kernel Descriptors for Visual Recognition
  4. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
  5. Learning with Kernels
  6. Kernel Based Methods for Hypothesis Testing

Lecture 7

Readings

  1. Geometry of Neural Network Loss Surfaces via Random Matrix Theory
  2. Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
  3. Nonlinear random matrix theory for deep learning

Lecture 8

Readings

  1. Deep Learning without Poor Local Minima
  2. Topology and Geometry of Half-Rectified Network Optimization
  3. Convexified Convolutional Neural Networks
  4. Implicit Regularization in Matrix Factorization

Lecture 9

Readings

  1. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  2. Perception as an inference problem
  3. A Neurobiological Model of Visual Attention and Invariant Pattern Recognition Based on Dynamic Routing of Information

Lecture 10

Readings

  1. Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding
  2. Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
  3. Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning
  4. Convolutional Dictionary Learning via Local Processing

To be discussed and extra

Theories of Deep Learning的更多相关文章

  1. (转) Deep Learning in a Nutshell: Reinforcement Learning

    Deep Learning in a Nutshell: Reinforcement Learning   Share: Posted on September 8, 2016by Tim Dettm ...

  2. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  3. The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near

    The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...

  4. Decision Boundaries for Deep Learning and other Machine Learning classifiers

    Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading ...

  5. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  6. (转)Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspectives

    Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspecti ...

  7. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  8. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  9. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

随机推荐

  1. MySQL存储引擎--MYSIAM和INNODB引擎区别

    参考:http://blog.csdn.net/memray/article/details/8914042 MYSIAM和INNODB引擎区别主要有以下几点: 1.MyISAM查询性能比InnoDB ...

  2. Java用freemarker导出word

    概述 最近一个项目要导出word文档,折腾老半天,发现还是用freemarker的模板来搞比较方便省事,现总结一下关键步骤,供大家参考,这里是一个简单的试卷生成例子. 详细 代码下载:http://w ...

  3. 监听Sms.Content_URI而不是Sms.Inbox.CONTENT_URI

    getContentResolver().registerContentObserver(Sms.Inbox.CONTENT_URI,         true, newMsgObserver); / ...

  4. 阿里云k8s私有仓库registry操作管理

    1. 登录阿里云Docker Registry $ sudo docker login --username=*****技 registry.cn-hangzhou.aliyuncs.com 用于登录 ...

  5. (转载)JWebUnit做Web项目自动化测试

    原址:http://blog.csdn.net/plainfield/archive/2007/07/02/1675546.aspx JwebUnit加构在HttpUnit上,实际上也可以这么说是Ht ...

  6. WinPE无法识别NVMe SSD硬盘,如何重装系统

    (源自网络出处不详) 抽风,diy一台新机器,下载的win10系统安装时出现如题所示的问题,开始以为是主板的问题设置u盘启动也不行,后来在某个群里有人说是系统版本问题,无奈重新做了启动优盘(用的17年 ...

  7. solr开发,提交索引数据的几种方式

    今天抽空学习了一下solr,有新东西学习就是哈皮! 期待能有机会与实战.实例仅为个人理解学习实例.提交到Solr服务器上的数据必须是 SolrInputDocument 类型. 方案一:利用反射,自定 ...

  8. 【Algorithm】希尔排序

    一. 算法描述 希尔排序:将无序数组分割为若干个子序列,子序列不是逐段分割的,而是相隔特定的增量的子序列,对各个子序列进行插入排序:然后再选择一个更小的增量,再将数组分割为多个子序列进行排序..... ...

  9. C语言中的 (void*)0 与 (void)0

    前几天看到一个宏, 它大概是这样的: #define assert_param(expr) ((expr) ? (void)0 : assert_failed((u8 *)__FILE__, __LI ...

  10. JAVA Socket编程和C++ Socket编程有什么不同

    原文链接: http://zhidao.baidu.com/link?url=16TEzhom2Nr8x1_2uTRp-e2pgZRgS5nW5ywtRX2XLHbtLOG8btif5DTyP85jf ...