https://stats385.github.io/readings

Lecture 1 – Deep Learning Challenge. Is There Theory?

Readings

  1. Deep Deep Trouble
  2. Why 2016 is The Global Tipping Point...
  3. Are AI and ML Killing Analyticals...
  4. The Dark Secret at The Heart of AI
  5. AI Robots Learning Racism...
  6. FaceApp Forced to Pull ‘Racist' Filters...
  7. Losing a Whole Generation of Young Men to Video Games

Lecture 2 – Overview of Deep Learning From a Practical Point of View

Readings

  1. Emergence of simple cell
  2. ImageNet Classification with Deep Convolutional Neural Networks (Alexnet)
  3. Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG)
  4. Going Deeper with Convolutions (GoogLeNet)
  5. Deep Residual Learning for Image Recognition (ResNet)
  6. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
  7. Visualizing and Understanding Convolutional Neural Networks

Blogs

  1. An Intuitive Guide to Deep Network Architectures
  2. Neural Network Architectures

Videos

  1. Deep Visualization Toolbox

Lecture 3

Readings

  1. A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
  2. Energy Propagation in Deep Convolutional Neural Networks
  3. Discrete Deep Feature Extraction: A Theory and New Architectures
  4. Topology Reduction in Deep Convolutional Feature Extraction Networks

Lecture 4

Readings

  1. A Probabilistic Framework for Deep Learning
  2. Semi-Supervised Learning with the Deep Rendering Mixture Model
  3. A Probabilistic Theory of Deep Learning

Lecture 5

Readings

  1. Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review
  2. Learning Functions: When is Deep Better Than Shallow

Lecture 6

Readings

  1. Convolutional Patch Representations for Image Retrieval: an Unsupervised Approach
  2. Convolutional Kernel Networks
  3. Kernel Descriptors for Visual Recognition
  4. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
  5. Learning with Kernels
  6. Kernel Based Methods for Hypothesis Testing

Lecture 7

Readings

  1. Geometry of Neural Network Loss Surfaces via Random Matrix Theory
  2. Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
  3. Nonlinear random matrix theory for deep learning

Lecture 8

Readings

  1. Deep Learning without Poor Local Minima
  2. Topology and Geometry of Half-Rectified Network Optimization
  3. Convexified Convolutional Neural Networks
  4. Implicit Regularization in Matrix Factorization

Lecture 9

Readings

  1. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  2. Perception as an inference problem
  3. A Neurobiological Model of Visual Attention and Invariant Pattern Recognition Based on Dynamic Routing of Information

Lecture 10

Readings

  1. Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding
  2. Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
  3. Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning
  4. Convolutional Dictionary Learning via Local Processing

To be discussed and extra

Theories of Deep Learning的更多相关文章

  1. (转) Deep Learning in a Nutshell: Reinforcement Learning

    Deep Learning in a Nutshell: Reinforcement Learning   Share: Posted on September 8, 2016by Tim Dettm ...

  2. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  3. The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near

    The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...

  4. Decision Boundaries for Deep Learning and other Machine Learning classifiers

    Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading ...

  5. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  6. (转)Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspectives

    Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspecti ...

  7. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  8. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  9. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

随机推荐

  1. C# 多线程并发锁模式-总结

    开篇: 互斥还是lock Monitor Mutex 模式! Muex Monitor lock AutoEventSet ManualEventSet 后续的 ReaderWriterLock   ...

  2. Centos6.5安装ansible2.6.3

    需求描述: 管理具有特征性的集群服务器,50台左右,服务都是规划好的!为了更加有效地管理服务器,需要引入协助管理员关系的工具!ansible基于ssh通信不需要安装agent(agentless),使 ...

  3. ios实例开发精品文章推荐(8.19)

    1.iOS源码:选择器类--简单的效果.<ignore_js_op> 下载地址:http://www.apkbus.com/android-109320-1-1.html 2.iOS源码: ...

  4. 路由器下CLI界面

    CLI(command-line interface,命令行界面)是指可在用户提示符下键入可执行指令的界面. CLI是Command Line Interface的缩写,即命令行界面.CLI界面是所有 ...

  5. Linux定时器工具

    要使用crontab定时器工具,必须要启动cron服务: service cron start crontab的语法,以备日后救急 参见:http://blog.csdn.net/zlzlei/art ...

  6. Linux 性能測试工具

    Linux 性能測试工具 linux performance 查看系统配置 查看CPU信息 lscpu Architecture: x86_64 CPU op-mode(s): 32-bit, 64- ...

  7. 【转】java原理—反射机制

    一.什么是反射:反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问.检测和修改它本身状态或行为的一种能力.这一概念的提出很快引发了计算机科学领域关于应用反射性的研究.它首先被程序语言 ...

  8. [转]OkHttp使用完全教程

    1. 历史上Http请求库优缺点 在讲述OkHttp之前, 我们看下没有OkHttp的时代, 我们是如何完成http请求的.在没有OkHttp的日子, 我们使用HttpURLConnection或者H ...

  9. 扯淡 id 先用着

    )) { ) { ) & ) { ); }}

  10. 《KAFKA官方文档》入门指南(转)

    1.入门指南 1.1简介 Apache的Kafka™是一个分布式流平台(a distributed streaming platform).这到底意味着什么? 我们认为,一个流处理平台应该具有三个关键 ...