Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
/ \
gr eat
/ \ / \
g r e at
/ \
a t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

class Solution {
public:
bool isScramble(string s1, string s2) {
int l = s1.length(), i, j, k, t;
if( == l)
return true;
vector<vector<vector<bool>>> dp(l, vector<vector<bool>>(l, vector<bool>(l+, )));
//dp[i][j][k] means s1 starts from index i, s2 starts from index j, if the length k substring is the same
for(i = ; i < l; i++)
{
for(j = ; j < l; j++)
{
dp[i][j][] = (s1[i] == s2[j]);
}
}
for(k = ; k <= l; k++)
{
for(i = ; i < l && i+k <= l; i++)
{
for(j = ; j < l && j+k <= l; j++)
{
for(t = ; t < k; t++)
{
dp[i][j][k] = dp[i][j][t] && dp[i+t][j+t][k-t] || dp[i][j+k-t][t] && dp[i+t][j][k-t];
if(dp[i][j][k])
break;
}
}
}
}
return dp[][][l];
}
};

87. Scramble String *HARD* 动态规划的更多相关文章

  1. 【一天一道LeetCode】#87. Scramble String

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

  2. [LeetCode] Scramble String -- 三维动态规划的范例

    (Version 0.0) 作为一个小弱,这个题目是我第一次碰到三维的动态规划.在自己做的时候意识到了所谓的scramble实际上有两种可能的类型,一类是在较低层的节点进行的两个子节点的对调,这样的情 ...

  3. [leetcode]87. Scramble String字符串树形颠倒匹配

    Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrin ...

  4. [leetcode] 87. Scramble String (Hard)

    题意: 判断两个字符串是否互为Scramble字符串,而互为Scramble字符串的定义: 字符串看作是父节点,从字符串某一处切开,生成的两个子串分别是父串的左右子树,再对切开生成的两个子串继续切开, ...

  5. google的面试题(三维动态规划的范例)——(87)Scramble String

    转:http://www.cnblogs.com/easonliu/p/3696135.html 分析:这个问题是google的面试题.由于一个字符串有很多种二叉表示法,貌似很难判断两个字符串是否可以 ...

  6. [LeetCode] 87. Scramble String 搅乱字符串

    Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrin ...

  7. 87. Scramble String (String; DP)

    Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrin ...

  8. leetCode 87.Scramble String (拼凑字符串) 解题思路和方法

    Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrin ...

  9. [LeetCode] 87. Scramble String 爬行字符串

    Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrin ...

随机推荐

  1. https的设置

    现有如下的web架构(简化之后的),需要把原来的http访问修改到https访问! haproxy的认证有两种方式: 第一种:haproxy提供ssl证书,后面的nginx访问使用正常的http. 第 ...

  2. Python3: Windows系统上同时安装Python2和Python3

    Python3: Windows系统上同时安装Python2和Python3 为什么要同时安装Python2和Python3环境呢? 因为一些库只支持Python2或者Python3; 在同一台电脑上 ...

  3. linux 添加 swap

    1)在linux下,首先,查看内存和swap大小: [root@rhel6 usr]# free -m              total       used       free     sha ...

  4. htm5之视频音频(shit IE10都不支持)

    <p style="color: red; background-color: black;"> 视频<br /> autoplay autoplay 如果 ...

  5. this逃逸

    首先,什么是this逃逸? this逃逸是指类构造函数在返回实例之前,线程便持有该对象的引用. 常发生于在构造函数中启动线程或注册监听器. eg: public class ThisEscape { ...

  6. 20145104张家明 《Java程序设计》第7周学习总结

    20145104张家明 <Java程序设计>第7周学习总结 教材学习内容总结 第13章 简单认识时间和日期 -时间的度量:GMT.UT.TAI.UTC.Unix.epoch. -UTC:保 ...

  7. 20145127 《Java程序设计》第四次实验报告

    在本周,我们进行了Andirod部分的学习,这一次实验是使用Andirod Studio来运行简单的Andirod小程序,并在自己的手机虚拟机上显示自己的学号,为了达到这一效果,我在Andirod S ...

  8. Android 实践项目开发 总结

      Android 实践项目开发 总结 课程:移动平台应用开发实践  班级:201592  姓名:杨凤  学号:20159213 成绩:___________       指导老师:娄嘉鹏       ...

  9. 20165211 2017-2018-2 《Java程序设计》第6周学习总结

    20165211 2017-2018-2 <Java程序设计>第6周学习总结 教材学习内容总结 本周,我学习了书本上第八.十五两章的内容,以下是我整理的主要知识. 第八章 常用实用类 St ...

  10. Spring Aop的理解和简单实现

    1.AOP概念 所说的面向切面编程其实就是在处理一系列业务逻辑的时候这一系列动作看成一个动作集合.比如连接数据库来说: 加载驱动-----获取class--------获取连接对象-------访问数 ...