正解:数论/一个神仙想法

解题报告:

先放传送门qwq

两种方法,都还挺妙的就都写了qwq

第一种是快速幂

把b用二进制表示成,ck*2k+ck-1*2k-1+...+c0*20

然后就可以表示成,a*(ck*2k+ck-1*2k-1+...+c0*20)%p

然后就可以用快速幂的思想做掉,能理解趴?

哦其实也可以用秦九韶理解,差不多,反正都这个意思就是了qwq

#include<bits/stdc++.h>
using namespace std;
#define rp(i,x,y) for(register ll i=x;i<=y;++i)
#define ll unsigned long long

ll a,b,p;

inline ll read()
{
    ;;
    '))ch=getchar();
    ;
    )+(x<<)+(ch^'),ch=getchar();
    return y?x:-x;
}
inline ll js(ll x,ll y,ll mod)
{
    ll ans=;
    while(x)
    {
        )ans+=y,ans%=mod;
        x>>=;y<<=;y%=mod;
    }
    return ans;
}

int main()
{
    a=read(),b=read(),p=read();
    printf("%lld\n",js(a,b,p));
    ;
}

第二种是一个,神仙想法

首先很容易能理解就是 a*b%p=a*b-⌊a*b/p⌋*p

然后就可以分成俩部分计算,一个是a*b直接算一个是⌊a*b/p⌋*p

首先理解一个东西,就是因为%p所以答案一定是小于等于p的,那么溢出导致舍弃掉了的部分就没有关系反正本来就是太大了要被废掉的

然后另一个就是⌊a*b/p⌋*p,我们可以先开个double算出⌊a*b/p⌋,考虑精度不够怎么办?没有关系因为double有效数字就是18-19的样子(,,,就是这么巧,被出题人安排得明明白白×)所以舍弃掉的部分刚好就是我们不需要的部分

然后就欧克了

是不是很妙!!!

(然后我开始做的时候还WA了一下,,,解释下发生了什么qwq就是,a和b是要%p的然后我忘了,,,所以就WA了,估计是溢出之类的问题?虽然我本机是A的?真实哭泣QAQ

#include<bits/stdc++.h>
using namespace std;
#define rp(i,x,y) for(register ll i=x;i<=y;++i)
#define ll unsigned long long

ll a,b,p,cjk;
double goldgenius;

inline ll read()
{
    ;;
    '))ch=getchar();
    ;
    )+(x<<)+(ch^'),ch=getchar();
    return y?x:-x;
}

int main()
{
    a=read(),b=read(),p=read();
    cjk=a*b;goldgenius=(double)a*b/p;
    cjk=cjk-(ll)goldgenius*p;cjk%=p;)cjk+=p;
    printf("%lld\n",cjk);
    ;
}

umm然后留下一个傻逼问题(,,,其实开始困扰了我半天来着×),这样的

为什么不可以直接算a*b%p呢?

这是因为!可能你舍掉了高位之后膜p会有问题!能懂趴?然后用法二就可以巧妙避免这个问题!

好那这题就解决辣!

CH0102 64位整数乘法 数论的更多相关文章

  1. CH0101 a^b、 CH0102 64位整数乘法(快速幂、快速乘)【模板题】

    题目链接:传送门    //a^b   传送门    //64位整数乘法 题目: 描述 求 a 的 b 次方对 p 取模的值,其中 ≤a,b,p≤^ 输入格式 三个用空格隔开的整数a,b和p. 输出格 ...

  2. CH0101 a^b & CH0102 64位整数乘法

    大数取模的两道题. 虐狗宝典学习笔记: 两个数值执行算术运算时,以参与运算的最高数值类型为基准,与保存结果的变量类型无关.两个32位整数的成绩可能超过int类型的表示范围,但是CPU只会用一个32位寄 ...

  3. CH 0101 - a^b / CH 0102 - 64位整数乘法 - [快速幂和快速乘]

    0101 a^b 题目链接:传送门 描述 求 a 的 b 次方对 p 取模的值,其中 1≤a,b,p≤10^9 输入格式 三个用空格隔开的整数 a,b 和 p. 输出格式 一个整数,表示 a^b mo ...

  4. AcWing 90. 64位整数乘法

    求a*b%p的值. 0<a,b,p<1e18; 原题链接 #include<bits/stdc++.h> #define ull unsigned long long usin ...

  5. C++的64位整数

    在做ACM题时,经常都会遇到一些比较大的整数.而常用的内置整数类型常常显得太小了:其中long 和 int 范围是[-2^31,2^31),即-2147483648~2147483647.而unsig ...

  6. C/C++中的64位整数

    C/C++中的64位整数(__int64 and long long) 在做ACM题时,经常都会遇到一些比较大的整数.而常用的内置整数类型常常显得太小了:其中long 和 int 范围是[-2^31, ...

  7. windows 64位整数

    #include <iostream> #include <ctime> using namespace std; int main() { cout << cou ...

  8. printf如何输出64位整数

    From: http://blog.csdn.net/zzqhost/article/details/6064886 关于printf函数输出64位数的问题,其实在window下和linux下是不一样 ...

  9. C对64位整数类型的支持

    在使用C语言过程中可能需要接触长整数类型,其中包括固定长度数据类型的声明.输入输出函数的标志符等细节,在此记录. int64_t 与 uint64_t C的标准只规定特定数据类型需要实现的最小长度,特 ...

随机推荐

  1. 使用librtmp进行H264与AAC直播

    libx264 版本是 128libfaac 版本是 1.28 1.帧的划分 1.1 H.264 帧 对于 H.264 而言每帧的界定符为 00 00 00 01 或者 00 00 01. 比如下面的 ...

  2. 由于OBJ模型的读取引起的Release无问题Debug卡死问题

    有些时候会遇到Release版本正常运行,但是Debug无法运行甚至崩溃,原因有很多种,这里记录一下由于模型文件读取引起的Debug问题. 项目中需要读取一个obj模型文件,30M左右,Debug模式 ...

  3. JS 实现拖动效果

    <html> <body style="margin:0px;"> <script src="http://ajax.googleapis. ...

  4. 【开源整理】.Net开源项目资源大全

    汇总了.NET平台开源的工具类库,新的内容在不断更新中.内容借鉴了博客园.伯乐在线.GitHub等平台. (注:下面用 [$] 标注的表示收费工具,但部分收费工具针对开源软件的开发/部署/托管是免费的 ...

  5. WEB中会话跟踪[转]

    今天晚上去华工参加睿智融科的笔试,问到web会话跟踪,一脸懵比,这个词听都没听过,回来后百度下,发现其实会话跟踪的内容我基本都了解的~_~ 转自:http://www.cnblogs.com/gaop ...

  6. 完全卸载Oracle数据库软件

    软件环境: 1.Windows xp+ORACLE 8.1.7 2.ORACLE安装路径为:C:\ORACLE 实现方法: 1. 开始->设置->控制面板->管理工具->服务 ...

  7. Mysql 忘记 root密码解决

    1 stop mysql Ubuntu/Debian: sudo /etc/init.d/mysql stop CentOs: sudo /etc/init.d/mysqld stop 2 启动saf ...

  8. Unity3D笔记 英保通八 关节、 布料、粒子系统

    一.关节1.1..链条关节 Hinge joint :他可以模拟两个物体间用一根链条连接在一起的情况,能保持两个物体在一个固定距离内部相互移动而不产生作用力,但是达到固定距离后就会产生拉力 1.2.. ...

  9. 【转】bit、byte、位、字节、汉字的关系

    UTF-8和UTF-16的区别?Unicode和UTF是什么关系?Unicode转义字符(\u+4个十六进制).遇到多个引号的时候转义? 解释: unicode是一种编码方式,和ascii是同一个概念 ...

  10. idea如何打war包?(部署tomcat后具有class文件)