Python Machine Learning-Chapter4
Chapter4 Building Good Training Sets – Data Preprocessing
4.1 Dealing with missing data
如何判断数据框内的数据是否有空值呢?
import pandas as pd
from io import StringIO csv_data = '''A, B, C, D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0,''' df = pd.read_csv(StringIO(csv_data))
df.isnull()
'''
A B C D
0 False False False False
1 False False True False
2 False False False True '''
df.isnull().sum()
'''
A 0
B 0
C 1
D 1
dtype: int64
4.2 Eliminating samples or features with missing values
既可以去除含NA的行,也可以去除含NA的列
import pandas as pd
from io import StringIO csv_data = '''A, B, C, D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0,''' df = pd.read_csv(StringIO(csv_data), names=['A', 'B', 'C', 'D'], header=0)
df
'''
A B C D
0 1.0 2.0 3.0 4.0
1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN ''' df.dropna()#去除含NaN的行
'''
A B C D
0 1.0 2.0 3.0 4.0
''' df.dropna(axis=1)#axis参数设置去除NA列
'''
A B
0 1.0 2.0
1 5.0 6.0
2 10.0 11.0
''' # only drop rows where all columns are NaN
df.dropna(how='all') # drop rows that have not at least 4 non-NaN values至少thresh个非NA的行才被保留
df.dropna(thresh=4)
'''
A B C D
0 1.0 2.0 3.0 4.0
'''
# only drop rows where NaN appear in specific columns (here: 'C')
df.dropna(subset=['C'])
'''
A B C D
0 1.0 2.0 3.0 4.0
2 10.0 11.0 12.0 NaN
'''
4.3 Imputing missing values
可以对NaN进行填充,用平均值或者出现次数最多的数据进行填充
import pandas as pd
from io import StringIO csv_data = '''A,B,C,D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0,''' df = pd.read_csv(StringIO(csv_data), names=['A','B', 'C', 'D'], header=0) from sklearn.preprocessing import Imputer
imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
#strategy = 'most_frequent'用出现次数最多的数据填充NaN
#axis = 1 行的平均值填充NaN
imr = imr.fit(df)
df.values
'''
array([[ 1., 2., 3., 4.],
[ 5., 6., nan, 8.],
[10., 11., 12., nan]])
'''
imputed_data = imr.transform(df.values)
imputed_data
'''
array([[ 1. , 2. , 3. , 4. ],
[ 5. , 6. , 7.5, 8. ],
[10. , 11. , 12. , 6. ]])
'''
4.4 Handling categorical data and Mapping ordinal features
有的特征虽然不是数值型的,但是也有大小之分,比如T-shirt,XL > L > M,这样的特征称为Ordinal features,而单纯的字符串型特征称为nominal features,先创建一个新的数据框来说明这个问题:
import pandas as pd
df = pd.DataFrame([
['green', 'M', 10.1, 'class1'],
['red', 'L', 13.5, 'class2'],
['blue', 'XL', 15.3, 'class1'] ])
df
'''
0 1 2 3
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
''' df.columns = ['color', 'size', 'price', 'classlabel']
df
'''
color size price classlabel
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
'''
其中包含nominal feature (color), an ordinal feature (size) and a numerical feature (price),虽然ordinal feature不是数值型,但是也有大小之分,所以需要转换成数值型的特征,现在没有现成的方法完成转换,需要我们自己进行Mapping:
import pandas as pd
df = pd.DataFrame([
['green', 'M', 10.1, 'class1'],
['red', 'L', 13.5, 'class2'],
['blue', 'XL', 15.3, 'class1'] ])
df
'''
0 1 2 3
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
''' df.columns = ['color', 'size', 'price', 'classlabel']
df
'''
0 1 2 3
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
''' size_mapping = {'XL' :3, 'L':2, 'M':1}#XL = L +1 = M + 2
df['size'] = df['size'].map(size_mapping)
df
'''
color size price classlabel
0 green 1 10.1 class1
1 red 2 13.5 class2
2 blue 3 15.3 class1
''' #也可以转回去,把数字型转换为字符型
str_mapping = {v:k for k,v in size_mapping.items()}
df['size'] = df['size'].map(str_mapping)
df
'''
color size price classlabel
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
'''
许多机器学习算法库要求class label是数值型的,参考上面的mapping方法对class label进行数值转换
import pandas as pd
df = pd.DataFrame([
['green', 'M', 10.1, 'class1'],
['red', 'L', 13.5, 'class2'],
['blue', 'XL', 15.3, 'class1'] ])
df
'''
0 1 2 3
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
''' df.columns = ['color', 'size', 'price', 'classlabel']
df
'''
0 1 2 3
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
''' size_mapping = {'XL' :3, 'L':2, 'M':1}#XL = L +1 = M + 2
df['size'] = df['size'].map(size_mapping)
df
'''
color size price classlabel
0 green 1 10.1 class1
1 red 2 13.5 class2
2 blue 3 15.3 class1
''' #也可以转回去,把数字型转换为字符型
str_mapping = {v:k for k,v in size_mapping.items()}
df['size'] = df['size'].map(str_mapping)
df
'''
color size price classlabel
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
''' import numpy as np
class_mapping = {label:idx for idx, label in enumerate(np.unique(df['classlabel']))}
class_mapping
'''
{'class1': 0, 'class2': 1}
'''
df['classlabel'] = df['classlabel'].map(class_mapping)
df
'''
color size price classlabel
0 green M 10.1 0
1 red L 13.5 1
2 blue XL 15.3 0
'''
#也可以转回去,将数字型label转换为字符型
inv_class_mapping = {v: k for k, v in class_mapping.items()}
df['classlabel'] = df['classlabel'].map(inv_class_mapping)
df
'''
color size price classlabel
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
'''
当然sklearn有内置的方法(LabelEncoder class)进行label数字型和字符型互相转换:
import pandas as pd df = pd.DataFrame([ ['green', 'M', 10.1, 'class1'], ['red', 'L', 13.5, 'class2'], ['blue', 'XL', 15.3, 'class1'] ]) df ''' 0 1 2 3 0 green M 10.1 class1 1 red L 13.5 class2 2 blue XL 15.3 class1 ''' df.columns = ['color', 'size', 'price', 'classlabel'] df ''' 0 1 2 3 0 green M 10.1 class1 1 red L 13.5 class2 2 blue XL 15.3 class1 ''' size_mapping = {'XL' :3, 'L':2, 'M':1}#XL = L +1 = M + 2 df['size'] = df['size'].map(size_mapping) df ''' color size price classlabel 0 green 1 10.1 class1 1 red 2 13.5 class2 2 blue 3 15.3 class1 ''' #也可以转回去,把数字型转换为字符型 str_mapping = {v:k for k,v in size_mapping.items()} df['size'] = df['size'].map(str_mapping) df ''' color size price classlabel 0 green M 10.1 class1 1 red L 13.5 class2 2 blue XL 15.3 class1 ''' from sklearn.preprocessing import LabelEncoder
class_le = LabelEncoder()
y = class_le.fit_transform(df['classlabel'].values)
y
'''
array([0, 1, 0], dtype=int64)
''' class_le.inverse_transform(y)
'''
array(['class1', 'class2', 'class1'], dtype=object)
'''
4.5 Performing one-hot encoding on nominal features
nominal feature同样需要进行encode转换成数值,但是如果采用和ordinal feature同样的处理方式:
#coding=utf-8
import pandas as pd df = pd.DataFrame([ ['green', 'M', 10.1, 'class1'], ['red', 'L', 13.5, 'class2'], ['blue', 'XL', 15.3, 'class1'] ]) df.columns = ['color', 'size', 'price', 'classlabel']
size_mapping = {'XL' :3, 'L':2, 'M':1}#XL = L +1 = M + 2
df['size'] = df['size'].map(size_mapping)
df
''' color size price classlabel 0 green 1 10.1 class1 1 red 2 13.5 class2 2 blue 3 15.3 class1 ''' from sklearn.preprocessing import LabelEncoder
class_le = LabelEncoder()
y = class_le.fit_transform(df['classlabel'].values)
y#array([0, 1, 0], dtype=int64) '''
#也可以转回去
class_le.inverse_transform(y)
array(['class1', 'class2', 'class1'], dtype=object)
'''
X = df[['color', 'size', 'price']].values
color_le = LabelEncoder()
X[:, 0] = color_le.fit_transform(X[:, 0])
X
'''
array([[1, 1, 10.1],
[2, 2, 13.5],
[0, 3, 15.3]], dtype=object)
blue -> 0
green -> 1
red -> 2
'''
如果把这样的数据给模型训练,模型会认为green特征大于blue,red特征大于green特征,这明显是错误的,所以nominal特征不能采用和ordinal特征一样的处理方式。处理nominal features常用的方法是one-hot encoding,如将color特征变成多维特征,如a blue sample can be encoded as blue=1, green=0, red=0:OneHot Encoder 内置于sklearn.preprocessing中:
#coding=utf-8 import pandas as pd df = pd.DataFrame([ ['green', 'M', 10.1, 'class1'], ['red', 'L', 13.5, 'class2'], ['blue', 'XL', 15.3, 'class1'] ]) df.columns = ['color', 'size', 'price', 'classlabel']
size_mapping = {'XL' :3, 'L':2, 'M':1}#XL = L +1 = M + 2
df['size'] = df['size'].map(size_mapping)
df ''' color size price classlabel 0 green 1 10.1 class1 1 red 2 13.5 class2 2 blue 3 15.3 class1 ''' from sklearn.preprocessing import LabelEncoder class_le = LabelEncoder() y = class_le.fit_transform(df['classlabel'].values) y#array([0, 1, 0], dtype=int64)
''' #也可以转回去 class_le.inverse_transform(y) array(['class1', 'class2', 'class1'], dtype=object) ''' X = df[['color', 'size', 'price']].values color_le = LabelEncoder() X[:, 0] = color_le.fit_transform(X[:, 0]) from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(categorical_features=[0]) print(ohe.fit_transform(X).toarray()) ''' array([[ 0. , 1. , 0. , 1. , 10.1], [ 0. , 0. , 1. , 2. , 13.5], [ 1. , 0. , 0. , 3. , 15.3]]) ''' #更常用的one-hot encoding方法是利用pandas中的get_dummies方法,get_dummies方法会只对string columns进行ond-hot encoding,而其他columns不会更改
pd.get_dummies(df[['price', 'color', 'size']]) ''' price size color_blue color_green color_red 0 10.1 1 0 1 0 1 13.5 2 0 0 1 2 15.3 3 1 0 0 '''
categorical_features参数指定变量的列(想要进行one-hot encoding的特征位置),而transform方法返回一个稀疏矩阵。
4.6 Partitioning a dataset in training and test sets
#coding=utf-8
import pandas as pd
import numpy as np df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)
df_wine.columns =[
'Class label', 'Alcohol',
'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium',
'Total phenols', 'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity', 'Hue',
'OD280/OD315 of diluted wines',
'Proline'
] print("Class labels", np.unique(df_wine['Class label']))
print(df_wine.head()) from sklearn.cross_validation import train_test_split
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values#通过行号,列号获取数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
print(X,y)
4.7 Bringing features onto the same scale
数据标准化:normalization和standardization
normalization:\( x_{norm} = (x-x_{min})/(x_{max}-x_{min}) \),sklearn.preprocessing中的MinMaxScaler方法可以进行normalization
#coding=utf-8
import pandas as pd
import numpy as np df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)
df_wine.columns =[
'Class label', 'Alcohol',
'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium',
'Total phenols', 'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity', 'Hue',
'OD280/OD315 of diluted wines',
'Proline'
] print("Class labels", np.unique(df_wine['Class label']))
print(df_wine.head()) from sklearn.cross_validation import train_test_split
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values#通过行号,列号获取数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
X_train_norm = mms.fit_transform(X_train)
X_test_norm = mms.transform(X_test)
print(X_train_norm, X_test_norm)
standardization:\( x_{std} = (x - \mu_{x})/\sigma_x \),其中\( \mu_{x}\)是某特征的mean,\( \sigma_x\)是某特征的standard deviation:
#coding=utf-8
import pandas as pd
import numpy as np df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)
df_wine.columns =[
'Class label', 'Alcohol',
'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium',
'Total phenols', 'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity', 'Hue',
'OD280/OD315 of diluted wines',
'Proline'
] print("Class labels", np.unique(df_wine['Class label']))
print(df_wine.head()) from sklearn.cross_validation import train_test_split
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values#通过行号,列号获取数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) print("============MinMaxScaler============")
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
X_train_norm = mms.fit_transform(X_train)
X_test_norm = mms.transform(X_test)
print(X_train_norm, X_test_norm) print("============StandardScaler============")
from sklearn.preprocessing import StandardScaler
stdsc = StandardScaler()
X_train_std = stdsc.fit_transform(X_train)
X_test_std = stdsc.transform(X_test)
print(X_train_std,X_test_std)
norm和std方法的差别如下表(考虑输入是0到5):
4.8 Selecting meaningful features
过拟合的解决方法:
- Collect more training data(不现实,训练数据有限)
- Introduce a penalty for complexity via regularization
- Choose a simpler model with fewer parameters
- Reduce the dimensionality of the data
4.9 Sequential feature selection algorithms(时序特征)
主要有两种维度减少的方法:特征选择和特征提取,下面以特征选择为例
#coding=utf-8
import pandas as pd
import numpy as np from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score class SBS():
def __init__(self, estimator, k_features, scoring=accuracy_score, test_size=0.25, random_state=1):
self.scoring = scoring
self.estimator = clone(estimator)
self.k_features = k_features
self.test_size = test_size
self.random_state = random_state def fit(self, X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.test_size, random_state=self.random_state)
dim = X_train.shape[1]
self.indices_ = tuple(range(dim))
self.subsets_ = [self.indices_]
score = self._calc_score(X_train, y_train, X_test, y_test, self.indices_)
self.scores_ = [score] while dim > self.k_features:
scores = []
subsets = [] for p in combinations (self.indices_, r=dim-1):
score = self._calc_score(X_train, y_train, X_test, y_test, p) scores.append(score)
subsets.append(p) best = np.argmax(scores)
self.indices_ = subsets[best]
self.subsets_.append(self.indices_)
dim -= 1 self.scores_.append(scores[best]) self.k_score_ = self.scores_[-1] return self def transform(self, X):
return X[:, self.indices_] def _calc_score(self, X_train, y_train, X_test, y_test, indices):
self.estimator.fit(X_train[:, indices], y_train)
y_pred = self.estimator.predict(X_test[:, indices])
score = self.scoring(y_test, y_pred)
return score df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)
df_wine.columns =[
'Class label', 'Alcohol',
'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium',
'Total phenols', 'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity', 'Hue',
'OD280/OD315 of diluted wines',
'Proline'
] print("Class labels", np.unique(df_wine['Class label']))
print(df_wine.head()) from sklearn.cross_validation import train_test_split
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values#通过行号,列号获取数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) print("============MinMaxScaler============")
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
X_train_norm = mms.fit_transform(X_train)
X_test_norm = mms.transform(X_test)
print(X_train_norm, X_test_norm) print("============StandardScaler============")
from sklearn.preprocessing import StandardScaler
stdsc = StandardScaler()
X_train_std = stdsc.fit_transform(X_train)
X_test_std = stdsc.transform(X_test)
print(X_train_std,X_test_std) from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
knn = KNeighborsClassifier(n_neighbors=2)
sbs = SBS(knn, k_features=1)
sbs.fit(X_train_std, y_train) #plot the classification accuracy of the KNN classifier that was calculated on the validation dataset.
k_feat = [len(k) for k in sbs.subsets_]
plt.plot(k_feat, sbs.scores_, marker='o')
plt.ylim([0.7, 1.1])
plt.ylabel('Accuracy')
plt.xlabel('Number of features')
plt.grid()
plt.show() #what those five features are that yielded such a good performance on the validation dataset
k5 = list(sbs.subsets_[8])
print(df_wine.columns[1:][k5])#Index(['Alcohol', 'Malic acid', 'Alcalinity of ash', 'Hue', 'Proline'], dtype='object') #let's evaluate the performance of the KNN classifier on the original test set
knn.fit(X_train_std, y_train)
print("Training accuracy:", knn.score(X_train_std, y_train))
#Training accuracy: 0.9838709677419355
print("Test accuracy:", knn.score(X_test_std, y_test))
#Test accuracy: 0.9444444444444444
'''
We used the complete feature set and obtained ~98.4 percent accuracy on the training dataset.
However, the accuracy on the test dataset was slightly lower (~94.4 percent),
which is an indicator of a slight degree of overfitting.
''' #Now let's use the selected 5-feature subset and see how well KNN performs
knn.fit(X_train_std[:, k5], y_train)
print('Training accuracy:', knn.score(X_train_std[:, k5], y_train))
#Training accuracy: 0.9596774193548387
print("Test accuracy:", knn.score(X_test_std[:, k5], y_test))
#Test accuracy: 0.9629629629629629
'''
Using fewer than half of the original features in the Wine dataset, the prediction
accuracy on the test set improved by almost 2 percent. Also, we reduced overfitting,
which we can tell from the small gap between test (~96.3 percent) and training
(~96.0 percent) accuracy.
'''
itertools中的combinations可以帮助我们从一个元组中选择若干个元素,并将其展示出来,如\C_6^2\)
S = ('ABCDEF')
for each in combinations(S, r=2):
print(each) #r指定选几个
'''
('A', 'B')
('A', 'C')
('A', 'D')
('A', 'E')
('A', 'F')
('B', 'C')
('B', 'D')
('B', 'E')
('B', 'F')
('C', 'D')
('C', 'E')
('C', 'F')
('D', 'E')
('D', 'F')
('E', 'F')
'''
关于itertools包的使用,可以参考:https://docs.python.org/2/library/itertools.html
4.10 Assessing feature importance with random forests
Train a forest of 10,000 trees on the Wine dataset and rank the 13 features by their respective importance measures and we don't need to use standardized or normalized tree-based models.
#coding=utf-8
import pandas as pd
import numpy as np df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)
df_wine.columns =[
'Class label', 'Alcohol',
'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium',
'Total phenols', 'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity', 'Hue',
'OD280/OD315 of diluted wines',
'Proline'
] print("Class labels", np.unique(df_wine['Class label']))
print(df_wine.head()) from sklearn.cross_validation import train_test_split
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values#通过行号,列号获取数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) from sklearn.ensemble import RandomForestClassifier
feat_labels = df_wine.columns[1:] forest = RandomForestClassifier(n_estimators=10000, random_state=0, n_jobs=-1)
forest.fit(X_train, y_train)
importances = forest.feature_importances_
indices = np.argsort(importances)[: : -1]
for f in range(X_train.shape[1]):
print("%2d) %-*s %f " % (f + 1, 60, feat_labels[indices[f]], importances[indices[f]])) import matplotlib.pyplot as plt
plt.title('Feature Importances')
plt.bar(range(X_train.shape[1]), importances[indices], color='lightblue', align='center')
plt.xticks(range(X_train.shape[1]), feat_labels[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.tight_layout()
plt.show()
'''
we created a plot that ranks the different features in the Wine dataset
by their relative importance; note that the feature importances are normalized so that they sum up to 1.0.
'''
Python Machine Learning-Chapter4的更多相关文章
- Python机器学习 (Python Machine Learning 中文版 PDF)
Python机器学习介绍(Python Machine Learning 中文版) 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早 ...
- [Python & Machine Learning] 学习笔记之scikit-learn机器学习库
1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...
- Python -- machine learning, neural network -- PyBrain 机器学习 神经网络
I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machi ...
- Python Machine Learning: Scikit-Learn Tutorial
这是一篇翻译的博客,原文链接在这里.这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门.我这里把这篇文章翻译一下,英语好的同学可以直接看原文. 大部分喜欢用Python来学 ...
- Python机器学习介绍(Python Machine Learning 中文版)
Python机器学习 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮 ...
- 《Python Machine Learning》索引
目录部分: 第一章:赋予计算机从数据中学习的能力 第二章:训练简单的机器学习算法——分类 第三章:使用sklearn训练机器学习分类器 第四章:建立好的训练集——数据预处理 第五章:通过降维压缩数据 ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 机器学习(Machine Learning)&深入学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...
随机推荐
- Linux内核分析— —扒开系统调用的三层皮(上)
实验部分 根据系统调用表,选取一个系统调用.我选得是mkdir这个系统调用,其系统调用号为39,即0x27 由于mkdir函数的原型为int mkdir (const char *filename, ...
- jq源码解析之绑在$,jQuery上面的方法
1.当我们用$符号直接调用的方法.在jQuery内部是如何封装的呢?有没有好奇心? // jQuery.extend 的方法 是绑定在 $ 上面的. jQuery.extend( { //expand ...
- Log4Net日志配置
1.添加Log4net.dll引用 将release版Log4net.dll拷贝到Lib文件夹,然后添加引用.
- 一个ip对应多个域名多个ssl证书配置-Nginx实现多域名证书HTTPS
一台服务器,两个域名 首先购买https,获取到CA证书,两个域名就得到两套证书 第二步:现在就是Nginx和OpenSSL的安装与配置(这里注意,一般情况下一个IP只支持一个SSL证书,那么我们现在 ...
- python 授权
1.“包装”意思是一个已经存在的对象进行包装,不管他是数据类型还是一段代码,可以是对一个已经存在的对象增加新的,删除不要的或者修改其他已经存在的功能 2.包装 包括定义一个类,他的实例拥有标准类型的核 ...
- Java 死锁
什么是死锁? 当一个线程永远地持有一个锁,并且其他线程都尝试去获得这个锁时,那么它们将永远被阻塞,当线程A持有锁1想获取锁2,当线程B持有锁2想获取锁1 这种情况下就会产生2个线程一直在阻塞等待其他线 ...
- java中线程安全和非线程安全的集合
线程安全 非线程安全 Collection Vector ArrayList.LinkedList HashSet.TreeSet Map HashTable HashMap.TreeMap 字符串 ...
- Layui_1.0.9_分页实例_Java
一.实体 package com.ebd.application.modules.taskManage.pojo; import com.ebd.application.common.Base.Bas ...
- Tree 菜单 递归
转载:http://www.cnblogs.com/igoogleyou/archive/2012/12/17/treeview2.html 一,通过查询数据库的方法 ID 为主键,PID 表明数据之 ...
- 自学Zabbix2.5-客户端agentd安装过程
点击返回:自学Zabbix之路 ....