数据倾斜是进行大数据计算时最经常遇到的问题之一。当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题。数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成。

  在hive中产生数据倾斜的原因和解决方法:

  1)group by,我使用Hive对数据做一些类型统计的时候遇到过某种类型的数据量特别多,而其他类型数据的数据量特别少。当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这里还没计算完成,其他节点的一直等待这个节点的任务执行完成,所以会看到一直map 100%  reduce 99%的情况。

  解决方法:set hive.map.aggr=true

       set hive.groupby.skewindata=true

  原理:hive.map.aggr=true 这个配置项代表是否在map端进行聚合

     hive.groupby.skwindata=true 当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

  2)map和reduce优化。

    1.当出现小文件过多,需要合并小文件。可以通过set hive.merge.mapfiles=true来解决。

      2.单个文件大小稍稍大于配置的block块的大写,此时需要适当增加map的个数。解决方法:set mapred.map.tasks个数

       3.文件大小适中,但map端计算量非常大,如select id,count(*),sum(case when...),sum(case when...)...需要增加map个数。解决方法:set mapred.map.tasks个数,set mapred.reduce.tasks个数

  3)当HiveQL中包含count(distinct)时

如果数据量非常大,执行如select a,count(distinct b) from t group by a;类型的SQL时,会出现数据倾斜的问题。

解决方法:使用sum...group by代替。如select a,sum(1) from (select a, b from t group by a,b) group by a;

  4)当遇到一个大表和一个小表进行join操作时。

    解决方法:使用mapjoin 将小表加载到内存中。

    如:select /*+ MAPJOIN(a) */

      a.c1, b.c1 ,b.c2

     from a join b

     where a.c1 = b.c1;

  5)遇到需要进行join的但是关联字段有数据为空,如表一的id需要和表二的id进行关联

     解决方法1:id为空的不参与关联

    比如:select * from log a

      join users b

      on a.id is not null and a.id = b.id

       union all

       select * from log a

      where a.id is null;

   解决方法2:给空值分配随机的key值

      如:select * from log a

        left outer join users b

        on

        case when a.user_id is null

        then concat(‘hive’,rand() )

        else a.user_id end = b.user_id;

Hive数据倾斜的更多相关文章

  1. 实战 | Hive 数据倾斜问题定位排查及解决

    Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措 ...

  2. Hive数据倾斜解决方法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  3. Hive数据倾斜总结

    倾斜的原因: 使map的输出数据更均匀的分布到reduce中去,是我们的最终目标.由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜.大量经验表明数据倾斜的原因是人为的建表疏忽或业务 ...

  4. Hive数据倾斜解决办法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  5. hive数据倾斜原因以及解决办法

    何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成, ...

  6. hive数据倾斜问题

    卧槽草草 来源于其它博客: 貌似我只知道group by key带来的倾斜 hive在跑数据时经常会出现数据倾斜的情况,使的作业经常reduce完成在99%后一直卡住,最后的1%花了几个小时都没跑完, ...

  7. Hive 数据倾斜原因及解决方法(转)

    在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平 ...

  8. Hive数据倾斜和解决办法

    转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形      后果 Join 其中一个表较小,但是key集中   ...

  9. hive数据倾斜的解决办法

    数据倾斜是进行大数据计算时常见的问题.主要分为map端倾斜和reduce端倾斜,map端倾斜主要是因为输入文件大小不均匀导致,reduce端主要是partition不均匀导致. 在hive中遇到数据倾 ...

随机推荐

  1. PostgreSQL与PostGIS的关系

    PostgreSQL相当于PostGIS的祖先,PostGIS是在PostgreSQL的基础上发展起来的,从它们的名字上也能看出些许端倪.PostgreSQL是一个开源数据库,而PostGIS在此基础 ...

  2. 背水一战 Windows 10 (83) - 用户和账号: 数据账号的添加和管理, OAuth 2.0 验证

    [源码下载] 背水一战 Windows 10 (83) - 用户和账号: 数据账号的添加和管理, OAuth 2.0 验证 作者:webabcd 介绍背水一战 Windows 10 之 用户和账号 数 ...

  3. Android 音乐(音效)播放方式总结

    一.音效的分类 音效按照作用的不同,可以将音效分为即时音效和背景音乐.两种音效在Android中的实现技术是不同的. 主要的实现方式为:SoundPool.MediaPlayer. 区别在于,Medi ...

  4. .NET手记-ASP.NET MVC快速分页的实现

    对于Web应用,展示List是很常见的需求,随之而来的常见的分页组件.jQuery有现成的分页组件,网上也有着大量的第三方分页组件,都能够快速实现分页功能.但是今天我描述的是用基本的C#和html代码 ...

  5. LeetCode--No.015 3Sum

    15. 3Sum Total Accepted: 131800 Total Submissions: 675028 Difficulty: Medium Given an array S of n i ...

  6. JavaScript防篡改对象

    不可扩展对象 默认情况下,所有对象都是可扩展的,使用Object.preventExtensions()方法可以改变这一行为. var person = { name: "Hiram&quo ...

  7. python之发送邮件~

    在之前的工作中,测试web界面产生的报告是自动使用python中发送邮件模块实现,在全部自动化测试完成之后,把报告自动发送给相关人员 其实在python中很好实现,一个是smtplib和mail俩个模 ...

  8. 在mpvue中使用map如何避坑

    最近在做一个需求,当用户放大地图到某个级别时,自动显示marker的callout标签,当小于这个缩放级别时,则隐藏callout.然而在我实现的过程中,却发现一个严重的问题:当我操作marker数据 ...

  9. 出现 The processing instruction target matching "[xX][mM][lL]" is not allowed错误

    错误原因与解决办法: 这个错误的原因是因为xml的开始有多余的空格造成的,只要把多余的空格删除就没有问题了. xml开始部分写注释也会出现此问题. 本文出自:艺意

  10. maven多环境参数配置

    maven中properties加载顺序 <build><filters></filters></build>中的配置 pom.xml中的<pro ...