数据倾斜是进行大数据计算时最经常遇到的问题之一。当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题。数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成。

  在hive中产生数据倾斜的原因和解决方法:

  1)group by,我使用Hive对数据做一些类型统计的时候遇到过某种类型的数据量特别多,而其他类型数据的数据量特别少。当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这里还没计算完成,其他节点的一直等待这个节点的任务执行完成,所以会看到一直map 100%  reduce 99%的情况。

  解决方法:set hive.map.aggr=true

       set hive.groupby.skewindata=true

  原理:hive.map.aggr=true 这个配置项代表是否在map端进行聚合

     hive.groupby.skwindata=true 当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

  2)map和reduce优化。

    1.当出现小文件过多,需要合并小文件。可以通过set hive.merge.mapfiles=true来解决。

      2.单个文件大小稍稍大于配置的block块的大写,此时需要适当增加map的个数。解决方法:set mapred.map.tasks个数

       3.文件大小适中,但map端计算量非常大,如select id,count(*),sum(case when...),sum(case when...)...需要增加map个数。解决方法:set mapred.map.tasks个数,set mapred.reduce.tasks个数

  3)当HiveQL中包含count(distinct)时

如果数据量非常大,执行如select a,count(distinct b) from t group by a;类型的SQL时,会出现数据倾斜的问题。

解决方法:使用sum...group by代替。如select a,sum(1) from (select a, b from t group by a,b) group by a;

  4)当遇到一个大表和一个小表进行join操作时。

    解决方法:使用mapjoin 将小表加载到内存中。

    如:select /*+ MAPJOIN(a) */

      a.c1, b.c1 ,b.c2

     from a join b

     where a.c1 = b.c1;

  5)遇到需要进行join的但是关联字段有数据为空,如表一的id需要和表二的id进行关联

     解决方法1:id为空的不参与关联

    比如:select * from log a

      join users b

      on a.id is not null and a.id = b.id

       union all

       select * from log a

      where a.id is null;

   解决方法2:给空值分配随机的key值

      如:select * from log a

        left outer join users b

        on

        case when a.user_id is null

        then concat(‘hive’,rand() )

        else a.user_id end = b.user_id;

Hive数据倾斜的更多相关文章

  1. 实战 | Hive 数据倾斜问题定位排查及解决

    Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措 ...

  2. Hive数据倾斜解决方法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  3. Hive数据倾斜总结

    倾斜的原因: 使map的输出数据更均匀的分布到reduce中去,是我们的最终目标.由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜.大量经验表明数据倾斜的原因是人为的建表疏忽或业务 ...

  4. Hive数据倾斜解决办法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  5. hive数据倾斜原因以及解决办法

    何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成, ...

  6. hive数据倾斜问题

    卧槽草草 来源于其它博客: 貌似我只知道group by key带来的倾斜 hive在跑数据时经常会出现数据倾斜的情况,使的作业经常reduce完成在99%后一直卡住,最后的1%花了几个小时都没跑完, ...

  7. Hive 数据倾斜原因及解决方法(转)

    在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平 ...

  8. Hive数据倾斜和解决办法

    转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形      后果 Join 其中一个表较小,但是key集中   ...

  9. hive数据倾斜的解决办法

    数据倾斜是进行大数据计算时常见的问题.主要分为map端倾斜和reduce端倾斜,map端倾斜主要是因为输入文件大小不均匀导致,reduce端主要是partition不均匀导致. 在hive中遇到数据倾 ...

随机推荐

  1. MFC树形控件的使用(右键点击)

    在MFC中,会用到树形控件,这里做下记录. 右键点击 1.添加右键点击事件(NM_RCLICK) 2.获得鼠标在Client的坐标 CPoint point; GetCursorPos(&po ...

  2. 【转】Closeable, Readable, Flushable, Appendable

    Closeable: package java.io; import java.io.IOException; public interface Closeable { /** * Closes th ...

  3. js-运动函数(盒子运动)

    注意move的js包在另一篇文章 <!DOCTYPE html><html> <head> <meta charset="UTF-8"&g ...

  4. C# MVC微信扫码支付

    项目需求:学校学生网上缴费项目,刚来公司实习网上百度了各种资料,感谢很多大神避免了很多大坑. 本次扫码支付为:电脑生成二维码,手机微信扫码进行付款.建议开发前下载官方demo熟悉及后续有用到里面代码: ...

  5. Akka-Cluster(1)- Cluster Singleton 单例节点

    关于cluster-singleton我在前面的博文已经介绍过,在这篇我想回顾一下它的作用和使用方法.首先,cluster-singleton就是集群某个节点上的一个actor.任何时间在集群内保证只 ...

  6. 微信小程序如何套用iconfont

    前言 如果你在开发微信时,没有图标的话,可以到http://www.iconfont.cn/ 官方下使用图标,那么我们去使用一些吧,到官方网址下点击使用~ 下载代码即可使用,看看下载的文件吧. 如图可 ...

  7. null、undefined、typeof、instanceof

    目录 概述 null undefined typeof instanceof 概述 JavaScript(ECMAScript标准)里共有5种基本类型: undefined, null, Boolea ...

  8. Java开发技术大揭底——让你认知自己技术上的缺陷,成为架构师

    一.分布式架构体系 分布式怎么来的.传统的电信.银行业,当业务量大了之后,普通服务器CPU/IO/网络到了100%,请求太慢怎么办?最直接的做法,升级硬件,反正也不缺钱,IBM小型机,大型机,采购了堆 ...

  9. 【转】ASP.NET Core MVC 配置全局路由前缀

    本文地址:http://www.cnblogs.com/savorboard/p/dontnet-IApplicationModelConvention.html作者博客:Savorboard 前言 ...

  10. 04-TypeScript中的方法新功能(上)

    在TypeScript中,提供了一些函数的新功能,能够简化JavaScript中的一些比较复杂代码才能实现的一些能力. 在C#后端语言中,能够对方法传递的参数指定params关键字,也就是可以传递任意 ...