引言

通过前面的文章,我们学习了Executor框架中的核心类ThreadPoolExecutor ,对于线程池的核心调度机制有了一定的了解,并且成功使用ThreadPoolExecutor 创建了线程池。

而在Java中,除了ThreadPoolExecutor ,Executor框架中还提供了四种线程池,这四种线程池都是直接或间接配置ThreadPoolExecutor的参数实现的,对于ThreadPoolExecutor类不熟悉的读者可以参考Java并发编程:Java线程池核心ThreadPoolExecutor的使用和原理分析

四种线程池

四种线程池分别是:newCachedThreadPool、newFixedThreadPool 、newScheduledThreadPool 和newSingleThreadExecutor ,下面对这几个线程池一一讲解。

newCachedThreadPool:可缓存的线程池

源码:

public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}

newCachedThreadPool的方法中是返回一个ThreadPoolExecutor实例,从源码中可以看出该线程池的特点:

1、该线程池的核心线程数量是0,线程的数量最高可以达到Integer 类型最大值;

2、创建ThreadPoolExecutor实例时传过去的参数是一个SynchronousQueue实例,说明在创建任务时,若存在空闲线程就复用它,没有的话再新建线程。

3、线程处于闲置状态超过60s的话,就会被销毁。

用法:

public static void main(String[] args) {
//定义ExecutorService实例
ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++) {
final int index = i;
try {
Thread.sleep(index * 1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//调用execute方法
cachedThreadPool.execute(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread() + ":" + index);
}
});
}
}

上面的代码因为每次循环都是隔一秒执行,这个时间足够之前的线程工作完毕,并在新循环中复用这个线程,程序的运行结果如下:

Thread[pool-1-thread-1,5,main]:0
Thread[pool-1-thread-1,5,main]:1
Thread[pool-1-thread-1,5,main]:2
Thread[pool-1-thread-1,5,main]:3
Thread[pool-1-thread-1,5,main]:4
Thread[pool-1-thread-1,5,main]:5
Thread[pool-1-thread-1,5,main]:6
Thread[pool-1-thread-1,5,main]:7
Thread[pool-1-thread-1,5,main]:8
Thread[pool-1-thread-1,5,main]:9

newFixedThreadPool:定长线程池

源码:

public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}

线程池特点:

1、线程池的最大线程数等于核心线程数,并且线程池的线程不会因为闲置超时被销毁。

2、使用的列队是LinkedBlockingQueue,表示如果当前线程数小于核心线程数,那么即使有空闲线程也不会复用线程去执行任务,而是创建新的线程去执行任务。如果当前执行任务数量大于核心线程数,此时再提交任务就在队列中等待,直到有可用线程。

用法:

public static void main(String[] args) {
ExecutorService cachedThreadPool = Executors.newFixedThreadPool(3);
for (int i = 0; i < 10; i++) {
final int index = i;
try {
Thread.sleep(index * 1000);
} catch (InterruptedException e) {
e.printStackTrace();
} cachedThreadPool.execute(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread() + ":" + index);
}
});
}
}

定义一个线程数为3的线程池,循环10次执行,可以发现运行的线程永远只有三个,结果如下:

Thread[pool-1-thread-1,5,main]:0
Thread[pool-1-thread-2,5,main]:1
Thread[pool-1-thread-3,5,main]:2
Thread[pool-1-thread-1,5,main]:3
Thread[pool-1-thread-2,5,main]:4
Thread[pool-1-thread-3,5,main]:5
Thread[pool-1-thread-1,5,main]:6
Thread[pool-1-thread-2,5,main]:7
Thread[pool-1-thread-3,5,main]:8
Thread[pool-1-thread-1,5,main]:9

newSingleThreadExecutor:单线程线程池

源码:

public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}

从源码就可以看出,该线程池基本就是只有一个线程数的newFixedThreadPool,它只有一个线程在工作,所有任务按照指定顺序执行。

用法:

和newFixedThreadPool类似,只是一直只有一个线程在工作,这里就不贴代码了。

newScheduledThreadPool:支持定时的定长线程池

源码:

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
} public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
new DelayedWorkQueue());
}
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}

newScheduledThreadPool的方法不是直接返回一个ThreadPoolExecutor实例,而是通过有定时功能的ThreadPoolExecutor,也就是ScheduledThreadPoolExecutor 来返回ThreadPoolExecutor实例,从源码中可以看出:

1、该线程池可以设置核心线程数量,最大线程数与newCachedThreadPool一样,都是Integer.MAX_VALUE。

2、该线程池采用的队列是DelayedWorkQueue,具有延迟和定时的作用。

用法:

public static void main(String[] args) {
ExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(3); //延迟3秒执行,只执行一次
((ScheduledExecutorService) scheduledThreadPool).schedule(new Runnable() {
@Override
public void run() {
System.out.println("延迟========");
}
},3,TimeUnit.SECONDS); //延迟1秒后每隔两秒执行一次
((ScheduledExecutorService) scheduledThreadPool).scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
System.out.println("执行============");
}
},1,2,TimeUnit.SECONDS); //单位是秒
}

自定义ThreadFactory

四种线程池的使用就说到这里了,值得说明的是,除了上面的参数外,Executors类中还给这四种线程池提供了可传ThreadFactory的重载方法,以下是它们的源码:

public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory));
}
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
threadFactory);
}
public static ScheduledExecutorService newScheduledThreadPool(
int corePoolSize, ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory);
}

ThreadFactory是一个接口类,也就是我们经常说的线程工厂,只有一个方法,可以用于创建线程:

Thread newThread(Runnable r);

默认情况下,ThreadPoolExecutor构造器传入的ThreadFactory 参数是Executors类中的defaultThreadFactory(),相当于一个线程工厂,帮我们创建了线程池中所需的线程。

除此之外,我们也可以自定义ThreadFactory,并根据自己的需要来操作线程,下面是实例代码:

public static void main(String[] args) {
ExecutorService service = new ThreadPoolExecutor(5, 5, 0L, TimeUnit.MILLISECONDS,
new SynchronousQueue<Runnable>(), new ThreadFactory() {
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
System.out.println("我是线程" + r);
return t;
}
}
);
//用lambda表达式编写方法体中的逻辑
Runnable run = () -> {
try {
Thread.sleep(1000);
System.out.println(Thread.currentThread().getName() + "正在执行");
} catch (InterruptedException e) {
e.printStackTrace();
}
};
for (int i = 0; i < 5; i++) {
service.submit(run);
}
//这里一定要做关闭
service.shutdown();
}

运行代码后,控制行会输出五行 “我是线程java.util.concurrent.ThreadPoolExecutor。。。。。”的信息,也证明了我们自定义的ThreadFactory起到了作用。

Java并发编程:Java的四种线程池的使用,以及自定义线程工厂的更多相关文章

  1. java并发编程笔记(四)——安全发布对象

    java并发编程笔记(四)--安全发布对象 发布对象 使一个对象能够被当前范围之外的代码所使用 对象逸出 一种错误的发布.当一个对象还没构造完成时,就使它被其他线程所见 不安全的发布对象 某一个类的构 ...

  2. Java并发编程-Java内存模型

    JVM内存结构与Java内存模型经常会混淆在一起,本文将对Java内存模型进行详细说明,并解释Java内存模型在线程通信方面起到的作用. 我们常说的JVM内存模式指的是JVM的内存分区:而Java内存 ...

  3. Java并发编程(十四)-- 线程池实现原理

    在上一章我们从宏观上介绍了ThreadPoolExecutor,本文将深入解析一下线程池的具体实现原理 原理解析 线程池状态 在ThreadPoolExecutor中定义了一个volatile变量,另 ...

  4. Java并发编程的艺术(四)——线程的状态

    线程的状态 初始态:NEW 创建一个Thread对象,但还未调用start()启动线程时,线程处于初始态. 运行态:RUNNABLE 在Java中,运行态包括就绪态 和 运行态. 就绪态 该状态下的线 ...

  5. Java并发编程(十四)Java内存模型

    1.共享内存和消息传递 线程之间的通信机制有两种:共享内存和消息传递:在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模型里,线程 ...

  6. java并发编程实战《四》互斥锁(下)

    互斥锁(下):如何用一把锁保护多个资源?    一把锁可以保护多个资源,但是不能用多把锁来保护一个资源. 那如何保护多个资源? 当我们要保护多个资源时,首先要区分这些资源是否存在关联关系. 如下代码 ...

  7. java并发编程(十四)同步问题的内存可见性

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/17288243 加锁(synchronized同步)的功能不仅仅局限于互斥行为,同时还存在另 ...

  8. Java并发编程:Java Thread 的 sleep() 和 wait() 的区别

      1. start 和 run 方法解释: 1) start: 用start方法来启动线程,真正实现了多线程运行,这时无需等待run方法体代码执行完毕而直接继续执行下面的代码.通过调用Thread类 ...

  9. Java并发编程:Java Thread方法join的简单总结

    虽然关于讨论线程join方法的博客已经很多了,不过个人感觉挺多都讨论得不够全面,所以我觉得有必要对其进行一个全面的总结. 一.作用 Thread类中的join方法的主要作用就是同步,它可以使得线程之间 ...

  10. Java线程池实现原理之自定义线程池(一)

    1.队列的概念 谈到多线程先讲下队列的概念,之后的多线程学习会用到此类知识. 队列分为:阻塞式队列(有界).非阻塞式队列(无界),遵循着先进先出.后进后出的原则.阻塞队列与非阻塞队列区别: 1.非阻塞 ...

随机推荐

  1. HDU 4309 Seikimatsu Occult Tonneru (状压 + 网络流)

    题意:输入 n 个城市 m 条边,但是边有三种有向边 a b  c d,第一种是 d 是 0,那么就是一条普通的路,可以通过无穷多人,如果 d < 0,那么就是隧道,这个隧道是可以藏 c 个人, ...

  2. TensorFlow基本--张量

    在TensorFlow中所有的数据都通过张量的形式表示,从功能上看张量可以被简单的理解为多维数据,其中零阶张量表示标量(一个数),第一阶张量为向量(一个一维数组),第n阶向量可以理解为一个n维数组. ...

  3. 用Rider写一个有IOC容器Autofac的.net core的程序

    一:Autofac是一个和Java里的Spring IOC容器一样的东西,不过它确实没有Spring里的那么方便,主要是在于它没有提供足够的Api和扫描方式等等,不过优点是它比Spring要快很多,而 ...

  4. zabbix教程

    zabbix官方文档:https://www.zabbix.com/documentation/current/zh/manual zabbix视频教程:https://www.bilibili.co ...

  5. MFC控件的颜色设置

    在绘制控件颜色时,控件会发送WM_CTLCOLOR消息给父窗口,父窗口收到消息后,映射到OnCtlColor()函数中处理. 该函数返回一个画刷用于设置子控件的背景颜色,子控件再执行自己的CtlCol ...

  6. 理解Time-Wait

    What is it? TIME-WAIT状态的主要作用在于TCP连接的拆除阶段.拆除一个TCP连接通常需要交换4个segment,如下图所示: Host1上的应用程序关闭了自己这一端的连接,使得TC ...

  7. 背水一战 Windows 10 (72) - 控件(控件基类): UIElement - UIElement 的位置, UIElement 的布局, UIElement 的其他特性

    [源码下载] 背水一战 Windows 10 (72) - 控件(控件基类): UIElement - UIElement 的位置, UIElement 的布局, UIElement 的其他特性 作者 ...

  8. Elasticsearch 自定义多个分析器

    分析器(Analyzer) Elasticsearch 无论是内置分析器还是自定义分析器,都由三部分组成:字符过滤器(Character Filters).分词器(Tokenizer).词元过滤器(T ...

  9. Typescript 学习笔记一:介绍、安装、编译

    前言 整理了一下 Typescript 的学习笔记,方便后期遗忘某个知识点的时候,快速回忆. 为了避免凌乱,用 gitbook 结合 marketdown 整理的. github地址是:ts-gitb ...

  10. LeetCode:144_Binary Tree Preorder Traversal | 二叉树的前序遍历 | Medium

    题目:Binary Tree Preorder Traversal 二叉树的前序遍历,同样使用栈来解,代码如下: struct TreeNode { int val; TreeNode* left; ...