luogu3628 特别行动队 (斜率优化dp)
推出来式子以后斜率优化水过去就完事了
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath>
#define inf 0x3f3f3f3f
#define LL long long int
using namespace std;
const int maxn=; inline LL rd(){
LL x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N;
LL f[maxn],x[maxn],s[maxn],A,B,C;
int q[maxn],head,tail; inline LL pw2(LL x){return x*x;} inline bool judge1(int j1,int j2,int i){
return (f[j1]+A*pw2(s[j1])-f[j2]-A*pw2(s[j2]))>*A*s[i]*(s[j1]-s[j2]);
}
inline bool judge2(int j1,int j2,int j3,int i){
return (f[j1]+A*pw2(s[j1])-f[j2]-A*pw2(s[j2]))*(s[j2]-s[j3])<
(f[j2]+A*pw2(s[j2])-f[j3]-A*pw2(s[j3]))*(s[j1]-s[j2]);
} int main(){
//freopen("3628.in","r",stdin);
int i,j,k;
N=rd();A=rd();B=rd();C=rd();
for(i=;i<=N;i++) x[i]=rd(),s[i]=s[i-]+x[i];
LL ans=;
tail=head=;q[]=;
for(i=;i<=N;i++){
while(head<tail&&!judge1(q[head],q[head+],i)) head++;
f[i]=f[q[head]]+A*pw2(s[i]-s[q[head]])+C;
while(head<tail&&judge2(q[tail-],q[tail],i,i)) tail--;
q[++tail]=i;
}printf("%lld\n",f[N]+B*s[N]);
return ;
}
luogu3628 特别行动队 (斜率优化dp)的更多相关文章
- APIO2010 特别行动队 & 斜率优化DP算法笔记
做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...
- [APIO2010]特别行动队 --- 斜率优化DP
[APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...
- APIO 2010 特别行动队 斜率优化DP
Description 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 (i ...
- bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5057 Solved: 2492[Submit][Statu ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- BZOJ 1911 特别行动队(斜率优化DP)
应该可以看出这是个很normal的斜率优化式子.推出公式搞一搞即可. # include <cstdio> # include <cstring> # include < ...
- bzoj1911 [Apio2010]特别行动队——斜率优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...
- 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP
想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...
- bzoj 1911: [Apio2010]特别行动队 -- 斜率优化
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MB Description Input Output Sample Input 4 ...
随机推荐
- Luogu P4137 Rmq Problem / mex
区间mex问题,可以使用经典的记录上一次位置之后再上主席树解决. 不过主席树好像不是很好写哈,那我们写莫队吧 考虑每一次维护什么东西,首先记一个答案,同时开一个数组记录一下每一个数出现的次数. 然后些 ...
- SERDES关键技术总结
转自https://www.cnblogs.com/liujinggang/p/10125727.html 一.SERDES介绍 随着大数据的兴起以及信息技术的快速发展,数据传输对总线带宽的要求越来越 ...
- WPF没落了吗?
从08年开始一直到现在,碰到所有的项目,我个人经手的,都用wpf开发. wpf应该说一直没有火过,一直平平淡淡. 个人为什么一直执着用wpf,开始使用是因公司项目,做了两年wpf开发,后来换工作一直搜 ...
- 开源数据同步神器——canal
前言 如今大型的IT系统中,都会使用分布式的方式,同时会有非常多的中间件,如redis.消息队列.大数据存储等,但是实际核心的数据存储依然是存储在数据库,作为使用最广泛的数据库,如何将mysql的数据 ...
- linux下用户操作记录审计环境的部署记录
通常,我们运维管理人员需要知道一台服务器上有哪些用户登录过,在服务器上执行了哪些命令,干了哪些事情,这就要求记录服务器上所用登录用户的操作信息,这对于安全维护来说很有必要.废话不多说了,下面直接记录做 ...
- cordova打包webapp
cordova打包webapp 在项目开发中,需要将h5页面打包成app,这个时候我们可以使用cordova来打包.在官方文档中,我们可以了解到创建一个app十分简单,你的电脑上有nodejs就行,我 ...
- 作业七:Linux内核如何装载和启动一个可执行程序
作业七:Linux内核如何装载和启动一个可执行程序 一.编译链接的过程和ELF可执行文件格式 可执行文件的创建——预处理.编译和链接 在object文件中有三种主要的类型. 一个可重定位(reloca ...
- Linux内核分析第六周总结
进程控制块PCB--task_struct 操作系统的内核里的三大功能: 进程管理 内存管理 文件系统 进程描述符--task_struct 进程管理是最核心的内容 然而Linux进程的状态与操作系统 ...
- RedisDump安装报错
环境:win10 首先安装 Ruby 安装好后,使用命令行 gem install redis-dump 在安装过程中始终报错,意思是无法使用make命令 然后安装make 参考教程: http:// ...
- This Android SDK requires Android Developer Toolkit version 17.0.0 or above. Current version is 10.0.0.v201102162101-104271. Please update ADT to the latest version.
win7/xp 下面安装Android虚拟机,更新SDK后,在Eclipse preference里指向android-sdk-windows时. 出现 : This Android SDK requ ...