LOJ.2585.[APIO2018]新家(二分 线段树 堆)
LOJ
洛谷
UOJ
BZOJ
四OJ Rank1 hhhha
表示这个b我能装一年→_→
首先考虑离线,将询问按时间排序。对于每个在\([l,r]\)出现的颜色,拆成在\(l\)加入和\(r+1\)删除两个操作,也按时间排序。
对于询问\((x,t)\),就是求\(t\)时刻,离\(x\)最远的颜色到\(x\)的距离,也就是从\(x\)出发往左右至少要走多远才能经过所有颜色。
考虑二分答案。那么就成了,求所有颜色是否都在\([x-mid,x+mid]\)中出现过。
对于这种是否出现过/只计算一次的问题,通常是对每种颜色计算从左到右第一个出现的颜色。
对每个位置\(i\)记\(pre_i\),表示\(col_i\)上次出现的位置。那么\(i\)是\(col_i\)颜色中,该区间第一个出现的当且仅当\(pre_i<l\)。
所以我们对区间求\(pre_i<l\)的位置个数就是答案了。但这好像要树套树。。于是复杂度就成了\(O(n\log^3n)\)。。
显然有点想偏。再看我们要求的问题:区间中是否出现过所有颜色。我们不需要求有多少种颜色出现了,只要能找到一种不在区间中出现过的颜色就可以了。
如果一种颜色不在\([l,r]\)中出现过,那么它的\(pre_i<l\)且\(i>r\)。也就是说我们求\([r+1,n]\)中是否存在\(pre_i<l\)就可以了,即求\(pre_i\)的最小值。
每种颜色的\(pre_i\)可以开\(k\)个\(set\)维护。
因为同一个位置可以有多种颜色,每个位置的\(pre_i\)会有很多且可能相同。所以对于每个位置还要用一个\(multiset\)或堆来维护\(\min\{pre_i\}\)并支持删除。
这样就OK啦,复杂度\(O(n\log^2n)\)。
再考虑一下二分能否直接在线段树上二分。实际上是可以的。
orz kcz。
二分一个\(mid\),如果\(Ans\geq mid\),则\((x-mid,x+mid)\)中不含所有颜色,即\([x+mid,n]\)中最小的前驱\(mn\)满足\(mn\leq x-mid\)。
我们实际是要求一个最大的\(i\),使得\([i,n]\)中最小的前驱\(mn\),仍满足\(mn+i\leq 2x\)(\(i\)越大则\(mn\)越大,越容易不满足条件)。此时答案就是\(\min\{i-x,\ x-\min\{pre_i\}\}\)(一个是右端点一个是左端点)。
怎么在线段树上求最大的\(i\)呢。
先判一下无解情况。
假设现在是在线段树的\([l,r]\)区间:
若\(x\)落在\([mid+1,r]\)区间,则\(i\)也一定落在\([mid+1,r]\)区间。
若\(x\)落在\([l,mid]\)区间,则要判断一下\(i\)能否落在\([mid+1,r]\)区间。因为\(i\)越大\(mn\)越大,所以只需要判下\(i=mid+1\)时是否可行就行了。
这样就一个\(\log\)啦。
注意求的\(\min\)是\([i,n]\)的,如果递归到\([l,mid]\)要与右区间取\(\min\)。
另外线段树上的节点以及\(mn\)是离散化后的值域,比较的时候用\(ref[mid]\)(实际值)与\(x\)比较。
把一个Delete写成Insert
还有st[col]写成st[p]
别的就和我四个小时前写的差不多了?==
我这调的四个小时究竟在干什么==
//BZOJ:55576kb 5916ms LOJ:35911ms 69728K Luogu:5049ms 88.89MB
#include <set>
#include <queue>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define MAXIN 500000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define INF 1000000000
typedef long long LL;
const int N=3e5+7;
int n,ref[N];
std::multiset<int> st[N];
char IN[MAXIN],*SS=IN,*TT=IN,OUT[3000000],*O=OUT;
struct Node
{
int x,type,t;
bool operator <(const Node &x)const
{
return t<x.t;
}
}A[N<<1];
struct Quries
{
int x,t,id;
bool operator <(const Quries &x)const
{
return t<x.t;
}
}q[N];
struct Heap
{
std::priority_queue<int,std::vector<int>,std::greater<int> > a,b;
// inline int Top() {return a.top();}
inline void Insert(int x) {a.push(x);}
inline void Delete(int x)
{
if(a.top()!=x) b.push(x);
else
{
a.pop();
while(!b.empty()&&a.top()==b.top()) a.pop(),b.pop();
}
}
}hp[N];
struct Segment_Tree
{
#define ls rt<<1
#define rs rt<<1|1
#define lson l,m,ls
#define rson m+1,r,rs
#define S N<<2
int mn[S];
#undef S
#define Update(rt) mn[rt]=std::min(mn[ls],mn[rs])
void Init(const int n)
{
for(int i=n<<2; i; --i) mn[i]=n;
}
// void Build(int l,int r,int rt)
// {
// if(l==r) {mn[rt]=hp[l].a.top(); return;}
// int m=l+r>>1; Build(lson), Build(rson), Update(rt);
// }
void Modify(int l,int r,int rt,int p)
{
if(l==r) {mn[rt]=hp[l].a.top(); return;}
int m=l+r>>1;
p<=m?Modify(lson,p):Modify(rson,p);
Update(rt);
}
// int Query(int l,int r,int rt,int x,int mnv)
// {
// if(l==r) return std::min(ref[l]-x,x-std::min(mnv,ref[mn[rt]]));
// int m=l+r>>1;
// if(x>ref[m] || ref[m]+1+std::min(mnv,ref[mn[rs]])<=x<<1) return Query(rson,x,mnv);
// return Query(lson,x,std::min(mnv,ref[mn[rs]]));
// }
int Query(int x)
{
int l=1,r=n,rt=1,mnv=INF;
while(l!=r)
{
int m=l+r>>1;
if(x>ref[m]||ref[m]+1+std::min(mnv,ref[mn[rs]])<=x<<1) l=m+1, rt=rs;
else mnv=std::min(mnv,ref[mn[rs]]), r=m, rt=ls;
}
return std::min(ref[l]-x,x-std::min(mnv,ref[mn[rt]]));
}
}T;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void print(int x)
{
static char obuf[13];
if(x<0) x=-x, *O++='-';
if(x)
{
int t=0; while(x) obuf[++t]=x%10+48, x/=10;
while(t) *O++=obuf[t--];
}
else *O++='0';
}
//void print(int x)
//{
// if(x<0) x=-x, *O++='-';
// if(x>9) print(x/10);
// *O++ = x%10+48;
//}
int Discrete(int n)
{
static std::pair<int,int*> tmp[N<<1];
for(int i=1; i<=n; ++i) tmp[i]=std::make_pair(A[i].x,&A[i].x);
std::sort(tmp+1,tmp+1+n);
int cnt=1; ref[*tmp[1].second=1]=tmp[1].first;
for(int i=2; i<=n; ++i)
ref[*tmp[i].second=tmp[i].first==tmp[i-1].first?cnt:++cnt]=tmp[i].first;
return cnt;
}
void Solve(int p,int col,int &tot)
{
static int tm[N];
if(col>0)
{
tot+=!tm[col]++;
std::multiset<int>::iterator it=st[col].lower_bound(p);//话说写set类型的迭代器竟然也对。。
int nxt=*it, pre=it==st[col].begin()?0:*--it;
hp[p].Insert(pre), T.Modify(1,n,1,p);
hp[nxt].Delete(pre), hp[nxt].Insert(p), T.Modify(1,n,1,nxt);//nxt最大也就是n,不会越界
st[col].insert(p);
}
else
{
col=-col, tot-=!--tm[col];
std::multiset<int>::iterator it=st[col].find(p);
int pre=it==st[col].begin()?0:(--it,*it++);
hp[p].Delete(pre), T.Modify(1,n,1,p);
st[col].erase(it++);
hp[*it].Delete(p), hp[*it].Insert(pre), T.Modify(1,n,1,*it);
}
}
int main()
{
static int Ans[N];
int n=read(),K=read(),Q=read(),cnt=0;
for(int i=1,x,type; i<=n; ++i)
x=read(), type=read(), A[++cnt]=(Node){x,type,read()}, A[++cnt]=(Node){x,-type,read()+1};
std::sort(A+1,A+1+cnt);
n=Discrete(cnt), ref[0]=-INF, ref[++n]=INF, ::n=n;
for(int i=1; i<=Q; ++i) q[i]=(Quries){read(),read(),i};
std::sort(q+1,q+1+Q);
for(int i=1; i<=n; ++i) hp[i].Insert(n);
for(int i=1; i<=K; ++i) hp[n].Insert(0), st[i].insert(n);
// T.Build(1,n,1); A[cnt+1].t=INF;
T.Init(n), T.Modify(1,n,1,n), A[cnt+1].t=INF;
for(int i=1,now=1,tot=0; i<=Q; ++i)
{
while(A[now].t<=q[i].t) Solve(A[now].x,A[now].type,tot), ++now;
Ans[q[i].id]=tot==K?T.Query(q[i].x):-1;
}
for(int i=1; i<=Q; ++i) print(Ans[i]), *O++='\n';//printf("%d\n",Ans[i]);
fwrite(OUT,1,O-OUT,stdout);
return 0;
}
LOJ.2585.[APIO2018]新家(二分 线段树 堆)的更多相关文章
- BZOJ5462 APIO2018新家(线段树+堆)
一个显然的做法是二分答案后转化为查询区间颜色数,可持久化线段树记录每个位置上一个同色位置,离线后set+树状数组套线段树维护.这样是三个log的. 注意到我们要知道的其实只是是否所有颜色都在该区间出现 ...
- 【APIO2018】新家(线段树)
[APIO2018]新家(线段树) 题面 UOJ 洛谷 BZOJ 题解 论比赛时想不到二分的危害,就只能Cu滚粗 既然不要在线,那么考虑离线做法. 既然时间是区间,那么显然按照时间顺序处理答案. 显然 ...
- 「APIO2018新家」
「APIO2018新家」 题目描述 五福街是一条笔直的道路,这条道路可以看成一个数轴,街上每个建筑物的坐标都可以用一个整数来表示.小明是一位时光旅行者,他知道在这条街上,在过去现在和未来共有 \(n\ ...
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- HDU4614 Vases and Flowers 二分+线段树
分析:感觉一看就是二分+线段树,没啥好想的,唯一注意,当开始摆花时,注意和最多能放的比大小 #include<iostream> #include<cmath> #includ ...
- J - Joseph and Tests Gym - 102020J (二分+线段树)
题目链接:https://cn.vjudge.net/contest/283920#problem/J 题目大意:首先给你n个门的高度,然后q次询问,每一次询问包括两种操作,第一种操作是将当前的门的高 ...
- Educational Codeforces Round 61 D 二分 + 线段树
https://codeforces.com/contest/1132/problem/D 二分 + 线段树(弃用结构体型线段树) 题意 有n台电脑,只有一个充电器,每台电脑一开始有a[i]电量,每秒 ...
- 【BZOJ-3110】K大数查询 整体二分 + 线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6265 Solved: 2060[Submit][Sta ...
- hdu6070 Dirt Ratio 二分+线段树
/** 题目:hdu6070 Dirt Ratio 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意:给定n个数,求1.0*x/y最小是多少.x ...
随机推荐
- cf919D 线性dp+拓扑排序
/* 给定一张有向图,图上每个结点都有一个字符,现在要求出一条路径,要使路径上某字符出现的次数最多 如果有环,输出-1即可 拓扑排序+dp dp[i][26]表示排序到结点i时26个字符出现的次数 在 ...
- 三维拓扑排序好题hdu3231
/* 三维拓扑排序 将每个长方体分解成六个面,xyz三维进行操作 每一维上的的所有长方体的面都应该服从拓扑关系,即能够完成拓扑排序=如果两个长方体的关系时相交,那么其对应的三对面只要交叉即可 如 a1 ...
- 监控CPU使用率并发送报警邮件
#!/bin/bash DATE=$(date +%F" "%H:%M) #只支持centos6 IP=$(ifconfig eth0 | awk -F '[ :]+' '/ine ...
- shell之ulimit应该注意的事项
详细介绍:http://www.cnblogs.com/xiaOt119/archive/2012/06/13/2547930.html ulimit -n 2048 1.这个限制是针对单个程序的限制 ...
- FFmpeg的一般流程
FFMPeg一般流程: 1.av_register_all();//注册所有文件格式和编解码库 2.avformat_network_init();//打开网络视频流 3.av_open_input_ ...
- 为什么访问json接口出现文件下载
在IE9,10,11下,当服务器端返回数据格式为json,且明确设置Content-Type为”application/json;charset=utf-8“时,会提示文件下载.如图所示: 解决办法是 ...
- 使用sysbench 0.5 对mysql 进行性能、压力测试
sysbench是一个模块化的.跨平台.多线程基准测试工具,主要用于评估测试各种不同系统参数下的数据库负载情况.目前sysbench代码托管在launchpad上,项目地址:https://launc ...
- cmake方式使用vlfeat
目录 environment statement compile vlfeat with cmake compile example project with cmake 1. make sure c ...
- Android常用框架和控件使用
Router框架 https://github.com/iqiyi/Andromeda/blob/master/CHINESE_README.md https://github.com/alibaba ...
- DevExpress中的GridControl控件设置了列Readonly后,想双击弹出明细的实现
OptionsBehavior.Editable = true时,会有二个对象触发事件:view触发ShownEditor 事件(第一单击时)和内置编辑器的DoubleClick事件所以必须处理这二个 ...