官网链接:https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator

Estimator - 一种可极大地简化机器学习编程的高阶 TensorFlow API。Estimator 会封装下列操作:

  • 训练
  • 评估
  • 预测
  • 导出以供使用

您可以使用官方提供的预创建的 Estimator,也可以编写自定义 Estimator。所有 Estimator(无论是预创建的还是自定义)都是基于 tf.estimator.Estimator 类的类。

Estimator 的优势

Estimator 具有下列优势:

  • 您可以在本地主机上或分布式多服务器环境中运行基于 Estimator 的模型,而无需更改模型。此外,您可以在 CPU、GPU 或 TPU 上运行基于 Estimator 的模型,而无需重新编码模型。
  • Estimator 简化了在模型开发者之间共享实现的过程。
  • 您可以使用高级直观代码开发先进的模型。简言之,采用 Estimator 创建模型通常比采用低阶 TensorFlow API 更简单。
  • Estimator 本身在 tf.layers 之上构建而成,可以简化自定义过程。
  • Estimator 会为您构建图。
  • Estimator 提供安全的分布式训练循环,可以控制如何以及何时:
    • 构建图
    • 初始化变量
    • 开始排队
    • 处理异常
    • 创建检查点文件并从故障中恢复
    • 保存 TensorBoard 的摘要

使用 Estimator 编写应用时,您必须将数据输入管道从模型中分离出来。这种分离简化了不同数据集的实验流程。

预创建的 Estimator

借助预创建的 Estimator,您能够在比基本 TensorFlow API 高级很多的概念层面上进行操作。由于 Estimator 会为您处理所有“管道工作”,因此您不必再为创建计算图或会话而操心。也就是说,预创建的 Estimator 会为您创建和管理 Graph 和 Session 对象。此外,借助预创建的 Estimator,您只需稍微更改下代码,就可以尝试不同的模型架构。例如,DNNClassifier 是一个预创建的 Estimator 类,它根据密集的前馈神经网络训练分类模型。

预创建的 Estimator 程序的结构

依赖预创建的 Estimator 的 TensorFlow 程序通常包含下列四个步骤:

  • 编写一个或多个数据集导入函数。 例如,您可以创建一个函数来导入训练集,并创建另一个函数来导入测试集。每个数据集导入函数都必须返回两个对象:

    • 一个字典,其中键是特征名称,值是包含相应特征数据的张量(或 SparseTensor)
    • 一个包含一个或多个标签的张量

    例如,以下代码展示了输入函数的基本框架:

def input_fn(dataset):
... # manipulate dataset, extracting the feature dict and the label
return feature_dict, label
  • 定义特征列。 每个 tf.feature_column 都标识了特征名称、特征类型和任何输入预处理操作。例如,以下代码段创建了三个存储整数或浮点数据的特征列。前两个特征列仅标识了特征的名称和类型。第三个特征列还指定了一个 lambda,该程序将调用此 lambda 来调节原始数据:
# Define three numeric feature columns.
population = tf.feature_column.numeric_column('population')
crime_rate = tf.feature_column.numeric_column('crime_rate')
median_education = tf.feature_column.numeric_column('median_education',
normalizer_fn=lambda x: x - global_education_mean)
  • 实例化相关的预创建的 Estimator。 例如,下面是对名为 LinearClassifier 的预创建 Estimator 进行实例化的示例代码:
# Instantiate an estimator, passing the feature columns.
estimator = tf.estimator.LinearClassifier(
feature_columns=[population, crime_rate, median_education],
)
  • 调用训练、评估或推理方法。例如,所有 Estimator 都提供训练模型的 train 方法。
# my_training_set is the function created in Step 1
estimator.train(input_fn=my_training_set, steps=2000)

从 Keras 模型创建 Estimator

您可以将现有的 Keras 模型转换为 Estimator。这样做之后,Keras 模型就可以利用 Estimator 的优势,例如分布式训练。调用 tf.keras.estimator.model_to_estimator,如下例所示:

# Instantiate a Keras inception v3 model.
keras_inception_v3 = tf.keras.applications.inception_v3.InceptionV3(weights=None)
# Compile model with the optimizer, loss, and metrics you'd like to train with.
keras_inception_v3.compile(optimizer=tf.keras.optimizers.SGD(lr=0.0001, momentum=0.9),
loss='categorical_crossentropy',
metric='accuracy')
# Create an Estimator from the compiled Keras model. Note the initial model
# state of the keras model is preserved in the created Estimator.
est_inception_v3 = tf.keras.estimator.model_to_estimator(keras_model=keras_inception_v3) # Treat the derived Estimator as you would with any other Estimator.
# First, recover the input name(s) of Keras model, so we can use them as the
# feature column name(s) of the Estimator input function:
keras_inception_v3.input_names # print out: ['input_1']
# Once we have the input name(s), we can create the input function, for example,
# for input(s) in the format of numpy ndarray:
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={"input_1": train_data},
y=train_labels,
num_epochs=1,
shuffle=False)
# To train, we call Estimator's train function:
est_inception_v3.train(input_fn=train_input_fn, steps=2000)

class Estimator(builtins.object)
一 介绍
Estimator 类,用来训练和验证 TensorFlow 模型。
Estimator 对象包含了一个模型 model_fn,这个模型给定输入和参数,会返回训练、验证或者预测等所需要的操作节点。
所有的输出(检查点、事件文件等)会写入到 model_dir,或者其子文件夹中。如果 model_dir 为空,则默认为临时目录。
config 参数为 tf.estimator.RunConfig 对象,包含了执行环境的信息。如果没有传递 config,则它会被 Estimator 实例化,使用的是默认配置。
params 包含了超参数。Estimator 只传递超参数,不会检查超参数,因此 params 的结构完全取决于开发者。
Estimator 的所有方法都不能被子类覆盖(它的构造方法强制决定的)。子类应该使用 model_fn 来配置母类,或者增添方法来实现特殊的功能。
Estimator 不支持 Eager Execution(eager execution能够使用Python 的debug工具、数据结构与控制流。并且无需使用placeholder、session,计算结果能够立即得出)。

二 类内方法

1、__init__(self, model_fn, model_dir=None, config=None, params=None, warm_start_from=None)
构造一个 Estimator 的实例.。
参数:

model_fn: 模型函数。函数的格式如下:
  参数:
  1、features: 这是 input_fn 返回的第一项(input_fn 是 train, evaluate 和 predict 的参数)。类型应该是单一的 Tensor 或者 dict。
  2、labels: 这是 input_fn 返回的第二项。类型应该是单一的 Tensor 或者 dict。如果 mode 为 ModeKeys.PREDICT,则会默认为 labels=None。如果 model_fn 不接受 mode,model_fn 应该仍然可以处理 labels=None。
  3、mode: 可选。指定是训练、验证还是测试。参见 ModeKeys。
  4、params: 可选,超参数的 dict。 可以从超参数调整中配置 Estimators。
  5、config: 可选,配置。如果没有传则为默认值。可以根据 num_ps_replicas 或 model_dir 等配置更新 model_fn。
  返回:
  EstimatorSpec
model_dir: 保存模型参数、图等的地址,也可以用来将路径中的检查点加载至 estimator 中来继续训练之前保存的模型。如果是 PathLike, 那么路径就固定为它了。如果是 None,那么 config 中的 model_dir 会被使用(如果设置了的话),如果两个都设置了,那么必须相同;如果两个都是 None,则会使用临时目录。
config: 配置类。
params: 超参数的dict,会被传递到 model_fn。keys 是参数的名称,values 是基本 python 类型。
warm_start_from: 可选,字符串,检查点的文件路径,用来指示从哪里开始热启动。或者是 tf.estimator.WarmStartSettings 类来全部配置热启动。如果是字符串路径,则所有的变量都是热启动,并且需要 Tensor 和词汇的名字都没有变。
异常:

RuntimeError: 开启了 eager execution

ValueError:model_fn 的参数与 params 不匹配

ValueError:这个函数被 Estimator 的子类所覆盖

2、train(self, input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)
根据所给数据 input_fn, 对模型进行训练。
参数:

input_fn:一个函数,提供由小 batches 组成的数据, 供训练使用。必须返回以下之一:
  1、一个 'tf.data.Dataset'对象:Dataset的输出必须是一个元组 (features, labels),元组要求如下。
  2、一个元组 (features, labels):features 是一个 Tensor 或者一个字典(特征名为 Tensor),labels 是一个 Tensor 或者一个字典(特征名为 Tensor)。features 和 labels 都被 model_fn 所使用,应该符合 model_fn 输入的要求。

hooks:SessionRunHook 子类实例的列表。用于在训练循环内部执行。

steps:模型训练的步数。如果是 None, 则一直训练,直到input_fn 抛出了超过界限的异常。steps 是递进式进行的。如果执行了两次训练(steps=10),则总共训练了 20 次。如果中途抛出了越界异常,则训练在 20 次之前就会停止。如果你不想递进式进行,请换为设置 max_steps。如果设置了 steps,则 max_steps 必须是 None。

max_steps:模型训练的最大步数。如果为 None,则一直训练,直到input_fn 抛出了超过界限的异常。如果设置了 max_steps, 则 steps 必须是 None。如果中途抛出了越界异常,则训练在 max_steps 次之前就会停止。执行两次 train(steps=100) 意味着 200 次训练;但是,执行两次 train(max_steps=100) 意味着第二次执行不会进行任何训练,因为第一次执行已经做完了所有的 100 次。

saving_listeners:CheckpointSaverListener 对象的列表。用于在保存检查点之前或之后立即执行的回调函数。

返回:
self:为了链接下去。
异常:
ValueError:steps 和 max_steps 都不是 None
ValueError:steps 或 max_steps <= 0

3、evaluate(self, input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)
根据所给数据 input_fn, 对模型进行验证。
对于每一步,执行 input_fn(返回数据的一个 batch)。
一直进行验证,直到:

steps 个 batches 进行完毕,或者
input_fn 抛出了越界异常(OutOfRangeError 或 StopIteration)
参数:

input_fn:一个函数,构造了验证所需的输入数据,必须返回以下之一:
  1、一个 'tf.data.Dataset'对象:Dataset的输出必须是一个元组 (features, labels),元组要求如下。
  2、一个元组 (features, labels):features 是一个 Tensor 或者一个字典(特征名为 Tensor),labels 是一个 Tensor 或者一个字典(特征名为 Tensor)。features 和 labels 都被 model_fn 所使用,应该符合 model_fn 输入的要求。
steps:模型验证的步数。如果是 None, 则一直验证,直到input_fn 抛出了超过界限的异常。
hooks:SessionRunHook 子类实例的列表。用于在验证内部执行。
checkpoint_path: 用于验证的检查点路径。如果是 None, 则使用 model_dir 中最新的检查点。
name:验证的名字。使用者可以针对不同的数据集运行多个验证操作,比如训练集 vs 测试集。不同验证的结果被保存在不同的文件夹中,且分别出现在 tensorboard 中。
返回:
返回一个字典,包括 model_fn 中指定的评价指标、global_step(包含验证进行的全局步数)
异常:
ValueError:如果 step 小于等于0
ValueError:如果 model_dir 指定的模型没有被训练,或者指定的 checkpoint_path 为空。

4、predict(self, input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True)
对给出的特征进行预测
参数:

input_fn:一个函数,构造特征。预测一直进行下去,直到 input_fn 抛出了越界异常(OutOfRangeError 或 StopIteration)。函数必须返回以下之一:
  1、一个 'tf.data.Dataset'对象:Dataset的输出和以下的限制相同。
  2、features:一个 Tensor 或者一个字典(特征名为 Tensor)。features 被 model_fn 所使用,应该符合 model_fn 输入的要求。
  3、一个元组,其中第一项为 features。
predict_keys:字符串列表,要预测的键值。当 EstimatorSpec.predictions 是一个 dict 时使用。如果使用了 predict_keys, 那么剩下的预测值会从字典中过滤掉。如果是 None,则返回全部。
hooks:SessionRunHook 子类实例的列表。用于在预测内部回调。
checkpoint_path: 用于预测的检查点路径。如果是 None, 则使用 model_dir 中最新的检查点。
yield_single_examples:If False, yield the whole batch as returned by the model_fn instead of decomposing the batch into individual elements. This is useful if model_fn returns some tensors whose first dimension is not equal to the batch size.
返回:
predictions tensors 的值
异常:
ValueError:model_dir 中找不到训练好的模型。
ValueError:预测值的 batch 长度不同,且 yield_single_examples 为 True。
ValueError:predict_keys 和 predictions 之间有冲突。例如,predict_keys 不是 None,但是 EstimatorSpec.predictions 不是一个 dict。

tf.estimator.Estimator类的用法的更多相关文章

  1. tf.estimator.Estimator

    1.定义 tf.estimator.Estimator(model_fn=model_fn) #model_fn是一个方法 2.定义model_fn: def model_fn_builder(sel ...

  2. C#中timer类的用法

    C#中timer类的用法 关于C#中timer类  在C#里关于定时器类就有3个   1.定义在System.Windows.Forms里   2.定义在System.Threading.Timer类 ...

  3. C#正则表达式Regex类的用法

    C#正则表达式Regex类的用法 更多2014/2/18 来源:C#学习浏览量:36891 学习标签: 正则表达式 Regex 本文导读:正则表达式的本质是使用一系列特殊字符模式,来表示某一类字符串, ...

  4. 标准C++中的string类的用法总结

    标准C++中的string类的用法总结 相信使用过MFC编程的朋友对CString这个类的印象应该非常深刻吧?的确,MFC中的CString类使用起来真的非常的方便好用.但是如果离开了MFC框架,还有 ...

  5. android中Handle类的用法

    android中Handle类的用法 当我们在处理下载或是其他需要长时间执行的任务时,如果直接把处理函数放Activity的OnCreate或是OnStart中,会导致执行过程中整个Activity无 ...

  6. Handle类的用法

    android中Handle类的用法 当我们在处理下载或是其他需要长时间执行的任务时,如果直接把处理函数放Activity的OnCreate或是OnStart中,会导致执行过程中整个Activity无 ...

  7. android application类的用法

    android application类的用法 Application是android系统Framework提供的一个组件,它是单例模式(singleton),即每个应用只有一个实例,用来存储系统的一 ...

  8. php class类的用法详细总结

    以下是对php中class类的用法进行了详细的总结介绍,需要的朋友可以过来参考下 一:结构和调用(实例化): class className{} ,调用:$obj = new className(); ...

  9. day319 1、正则表达式的定义及使用 2、Date类的用法 3、Calendar类的用法

    1.正则表达式的定义及使用2.Date类的用法3.Calendar类的用法 一.正则表达式 ###01正则表达式的概念和作用* A: 正则表达式的概念和作用* a: 正则表达式的概述* 正则表达式也是 ...

随机推荐

  1. Linux学习小记(1)

    学习Linux,进行阶段性总结,权当笔记方便日后翻阅和查看. 在此特别推荐peida的博客,他的有关Linux的理解个人感觉深入浅出,很适合入门的小白来理解和学习. 说一说针对IP的修改,ifconf ...

  2. 深拷贝 deepAssign

    实现代码: <script type="text/javascript"> Object.deepAssign = function() { var args = Ar ...

  3. addEventListener()方法

    ★JS事件的捕获阶段和冒泡阶段: 讨论的主要是两个事件模型:IE事件模型与DOM事件模型 IE内核浏览器的事件模型是冒泡型事件(没有捕获事件过程),事件句柄的触发顺序是从ChildNode到Paren ...

  4. mark 三年工作总结

    在新公司加班,正在看<HBase 权威指南>,看Michael Stack为本书写的序,介绍HBase最初的发展,Lars在HBase 使用和推广做出的贡献. 突然想到,我还有一篇工作三年 ...

  5. ABP框架系列之三十九:(NLayer-Architecture-多层架构)

    Introduction Layering of an application's codebase is a widely accepted technique to help reduce com ...

  6. Spring通过在META-INF/spring.handlers中的属性进行配置文件解析

    在Spring的入口函数refresh()之中进行的. AbstractApplicationContext ConfigurableListableBeanFactory beanFactory = ...

  7. Makefile基础学习

    Makefile基础学习 理论知识 makefile关系到了整个工程的编译规则.一个工程中的源文件不计其数,并且按类型.功能.模块分别放在若干个目录中,makefile定义了一系列的规则来指定,哪些文 ...

  8. Programming | 中/ 英文词频统计(MATLAB实现)

    一.英文词频统计 英文词频统计很简单,只需借助split断句,再统计即可. 完整MATLAB代码: function wordcount %思路:中文词频统计涉及到对"词语"的判断 ...

  9. git dev 分支merge到master

    code reviewer之后,需要把dev分支的代码merge到master分支.通过在azkaban的服务器上git pull,最终将代码上线. git dev 分支merge到master # ...

  10. 团队博客-第六周:Alpha阶段项目复审(只会嘤嘤嘤队)

    小组名 题目 优点 缺点 排名 小谷围驻广东某工业719电竞大队 广工生活社区 功能多样,设计完整,实用,界面美观 界面风格不够统一,当前时间系统尚未发布 1 大猪蹄子队 四六级背单词游戏 界面十分美 ...